精英家教网 > 高中数学 > 题目详情

若函数,若f(a)>f(-a),则实数a的取值范围是


  1. A.
    (-1,0)∪(0,1)
  2. B.
    (-∞,1)∪(1,+∞)
  3. C.
    (-∞,-1)∪(0,1)
  4. D.
    (-1,0)∪(1,+∞)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2、若函数y=f(x)在区间[a,b]上的图象为连续不断的一条曲线,则下列说法正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)的定义域为D,若存在x0∈D,使f(x0)=x0成立,则称以(x0,x0)为坐标的点为函数f(x)图象上的不动点.
(1)若函数f(x)=
3x+a
x+b
图象上有两个关于原点对称的不动点,求实数a,b应满足的条件;
(2)设点P(x,y)到直线y=x的距离d=
|x-y|
2
.在(1)的条件下,若a=8,记函数f(x)图象上的两个不动点分别为A1,A2,P为函数f(x)图象上的另一点,其纵坐标yP>3,求点P到直线A1A2距离的最小值及取得最小值时点P的坐标.
(3)下述命题“若定义在R上的奇函数f(x)图象上存在有限个不动点,则不动点有奇数个”是否正确?若正确,请给予证明;若不正确,请举一反例.若地方不够,可答在试卷的反面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

记函数f(x)的定义域为D,若存在x0∈D,使f(x0)=x0成立,则称以(x0,x0)为坐标的点为函数f(x)图象上的不动点.
(1)若函数f(x)=
3x+a
x+b
图象上有两个关于原点对称的不动点,求实数a,b应满足的条件;
(2)设点P(x,y)到直线y=x的距离d=
|x-y|
2
.在(1)的条件下,若a=8,记函数f(x)图象上的两个不动点分别为A1,A2,P为函数f(x)图象上的另一点,其纵坐标yP>3,求点P到直线A1A2距离的最小值及取得最小值时点P的坐标.
(3)下述命题“若定义在R上的奇函数f(x)图象上存在有限个不动点,则不动点有奇数个”是否正确?若正确,请给予证明;若不正确,请举一反例.若地方不够,可答在试卷的反面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数y=f(x)在区间[a,b]上的图象为连续不断的一条曲线,则下列说法正确的是(  )
A.若f(a)f(b)>0,不存在实数c∈(a,b)使得f(c)=0;
B.若f(a)f(b)<0,存在且只存在一个实数c∈(a,b)使得f(c)=0;
C.若f(a)f(b)>0,有可能存在实数c∈(a,b)使得f(c)=0;
D.若f(a)f(b)<0,有可能不存在实数c∈(a,b)使得f(c)=0;

查看答案和解析>>

同步练习册答案