精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lg(x+
ax
-2),其中a为大于零的常数.
(1)当a=1时,求函数f(x)的定义域;
(2)若对任意x∈[2,+∞),恒有f(x)>0,试确定a的取值范围;
(3)若f(x)的值域为R,求a的取值范围.
分析:(1)求函数f(x)的定义域,就是求 x+
a
x
-2>0
,可以通过对数的真数是正数解决;
(2)对任意x∈[2,+∞)恒有f(x)>0,即 x+
a
x
-2>1
对x∈[2,+∞)恒成立,转化为a是x的函数,即可求得a的取值范围.
(3)f(x)的值域为R,则其真数在实数集上不恒为正,将这一关系转化为不等式求解参数的范围即可.
解答:解:(1)由 x+
a
x
-2>0
得,
x2-2x+a
x
>0

a=1时,定义域为{x|x>0且x≠1},
(2)对任意x∈[2,+∞)恒有f(x)>0,
 即 x+
a
x
-2>1
对x∈[2,+∞)恒成立
∴a>3x-x2,而 h(x)=3x-x2=-(x-
3
2
)2+
9
4
在x∈[2,+∞)上是减函数,
∴h(x)max=h(2)=2,
∴a>2.
(3)函数 f(x)=loga(x+
a
x
-2)
,(a>0)的值域为R,其真数在实数集上不恒为正,
x+
a
x
-2>0
不恒成立,即存在x∈R使得 x+
a
x
≤2,又a>0
故可求 x+
a
x
的最小值,令其小于等于2
x+
a
x
≥2
a

2
a
2,解得a≤1,
故实数a的取值范围是(0,1].
点评:本题考查函数恒成立问题,(1)着重考查分类讨论思想;(2)着重考查分离参数法,是一道好题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案