精英家教网 > 高中数学 > 题目详情
14.己知实数x、y满足$\left\{\begin{array}{l}{y≤x}\\{x+2y≤4}\\{y≥-2}\end{array}\right.$,若存在x、y满足(x+1)2+(y-1)2=r2(r>0),则r的最小值为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{4}{3}$$\sqrt{2}$D.$\frac{4}{3}$$\sqrt{3}$

分析 画出满足约束条件的可行域,分析(x+1)2+(y-1)2=r2(r>0)中r的几何意义,数形结合,可得答案.

解答 解:满足约束条件$\left\{\begin{array}{l}{y≤x}\\{x+2y≤4}\\{y≥-2}\end{array}\right.$的可行域如下图所示:

(x+1)2+(y-1)2表示P(-1,1)到平面区间内一点(x,y)距离的平方,
由P到直线y=x的距离为$\sqrt{2}$,
可得r的最小值为$\sqrt{2}$,
故选:A.

点评 本题考查的知识点是线性规划的简单应用,画出满足条件的可行域,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知定点A(3,1),P是椭圆$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}=1$上的任一点,F1,F2分别是椭圆的左右焦点,则|PF2|+|PA|的最小值为10-5$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,三内角A,B,C满足2B=A+C,求解:tan$\frac{A}{2}$+tan$\frac{B}{2}$+tan$\frac{C}{2}$+$\sqrt{3}$tan$\frac{A}{2}$tan$\frac{C}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知an=$\left\{\begin{array}{l}{\frac{1}{n(n+1)},1≤n≤3}\\{\frac{1}{{2}^{n-1}},n≥4}\end{array}\right.$.Sn为前n项的和,求(1)$\underset{lim}{n→∞}{a}_{n}$;(2)$\underset{lim}{n→∞}{S}_{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设数列{an}的前n项和为Sn,已知2Sn=3n+3.求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在极坐标系中已知圆C:ρ2-4$\sqrt{2}ρcos(θ-\frac{π}{4})+6=0$与直线 L:3ρcosθ+4ρsinθ+6=0
(1)将直线L和圆C的极坐标方程化为直角坐标方程.
(2)求圆C上的点到直线L的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,在四棱锥P-ABCD中,△PAB为等边三角形,AD⊥AB,AD∥BC,平面PAB⊥平面ABCD,E为PD的中点,F为PA中点.
(1)证明:PA⊥平面BEF;
(2)若AD=2BC=2AB=4,求点D到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=Asin(ωx+φ)(ω>0,0<φ<π)的一段图象如图所示,则过点P(ω,φ),且斜率为A的直线方程是(  )
A.y-$\frac{π}{3}$=$\sqrt{3}$(x-2)B.y-$\frac{2π}{3}$=$\sqrt{3}$(x-4)C.y-$\frac{2π}{3}$=2(x-4)D.y-$\frac{2π}{3}$=2(x-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,角A,B,C所对的边分别是a,b,c,若$20a•\overrightarrow{BC}+15b•\overrightarrow{CA}+12c•\overrightarrow{AB}=\vec 0$,则△ABC的最小角等于$arccos\frac{4}{5}$.

查看答案和解析>>

同步练习册答案