【题目】如图,设椭圆: 的离心率为, 分别为椭圆的左、右顶点, 为右焦点,直线与的交点到轴的距离为,过点作轴的垂线, 为上异于点的一点,以为直径作圆.
(1)求的方程;
(2)若直线与的另一个交点为,证明:直线与圆相切.
科目:高中数学 来源: 题型:
【题目】设点是棱长为2的正方体的棱的中点,点在面所在的平面内,若平面分别与平面和平面所成的锐二面角相等,则点到点的最短距离是( )
A. B. C. 1 D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(ex)=ax2﹣x,a∈R.
(1)求f(x)的解析式;
(2)求x∈(0,1]时,f(x)的值域;
(3)设a>0,若h(x)=[f(x)+1﹣a]logxe对任意的x1 , x2∈[e﹣3 , e﹣1],总有|h(x1)﹣h(x2)|≤a+ 恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某机构为了解某地区中学生在校月消费情况,随机抽取了100名中学生进行调查.如图是根据调查的结果绘制的学生在校月消费金额的频率分布直方图.已知[350,450),[450,550),[550,650)三个金额段的学生人数成等差数列,将月消费金额不低于550元的学生称为“高消费群”.
(1)求m,n的值,并求这100名学生月消费金额的样本平均数 (同一组中的数据用该组区间的中点值作代表);
(2)根据已知条件完成下面2×2列联表,并判断能否有90%的把握认为“高消费群”与性别有关?
高消费群 | 非高消费群 | 合计 | |
男 | |||
女 | 10 | 50 | |
合计 |
(参考公式: ,其中n=a+b+c+d)
P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场在店庆一周年开展“购物折上折活动”:商场内所有商品按标价的八折出售,折后价格每满500元再减100元.如某商品标价为1500元,则购买该商品的实际付款额为1500×0.8﹣200=1000(元).设购买某商品得到的实际折扣率= .设某商品标价为x元,购买该商品得到的实际折扣率为y.
(1)写出当x∈(0,1000]时,y关于x的函数解析式,并求出购买标价为1000元商品得到的实际折扣率;
(2)对于标价在[2500,3500]的商品,顾客购买标价为多少元的商品,可得到的实际折扣率低于 ?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】曲线的参数方程为 (为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)写出的直角坐标方程,并且用 (为直线的倾斜角, 为参数)的形式写出直线的一个参数方程;
(2) 与是否相交,若相交求出两交点的距离,若不相交,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】规定投掷飞镖3次为一轮,若3次中至少两次投中8环以上为优秀,现采用随机模拟实验的方法估计某人投掷飞镖的情况:先由计算器产生随机数0或1,用0表示该次投标未在8环以上,用1表示该次投标在8环以上;再以每三个随机数作为一组,代表一轮的结果,经随机模拟实验产生了如下20组随机数:
101 111 011 101 010 100 100 011 111 110
000 011 010 001 111 011 100 000 101 101
据此估计,该选手投掷飞镖三轮,至少有一轮可以拿到优秀的概率为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com