分析 运用同角的平方关系和平方差公式、立方差公式,化简整理,再分子分母同除以cos2α,再转化为关于tanx的二次方程,由判别式非负,解不等式即可得到函数的最值.
解答 解:y=f(x)=$\frac{co{s}^{5}x-cosxsi{n}^{4}x}{co{s}^{3}x-si{n}^{3}x}$=$\frac{cosx(co{s}^{4}x-si{n}^{4}x)}{(cosx-sinx)(co{s}^{2}x+cosxsinx+si{n}^{2}x)}$
=$\frac{cosx(co{s}^{2}x-si{n}^{2}x)(co{s}^{2}x+si{n}^{2}x)}{(cosx-sinx)(co{s}^{2}x+cosxsinx+si{n}^{2}x)}$
=$\frac{co{s}^{2}x+cosxsinx}{co{s}^{2}x+cosxsinx+si{n}^{2}x}$=$\frac{1+tanx}{1+tanx+ta{n}^{2}x}$(tanx≠1),
可得ytan2x+(y-1)tanx+y-1=0,
由判别式△≥0,即(y-1)2-4y(y-1)≥0,
解得-$\frac{1}{3}$≤y≤1.
则当tanx=-2时,f(x)取得最小值-$\frac{1}{3}$;
当tanx=0时,f(x)取得最大值1.
点评 本题考查三角函数的最值的求法,注意运用同角的平方关系和商数关系化简整理,结合二次方程判别式非负,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 单调递增 | B. | 单调递减 | C. | 先增后减 | D. | 先减后增 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com