精英家教网 > 高中数学 > 题目详情
由点P(1,-2)向圆x2+y2-6x-2y+6=0所引的切线方程是
x=1或5x-12y-29=0.
x=1或5x-12y-29=0.
分析:化圆为标准方程得(x-3)2+(y-1)2=4,从而得到圆心为C(3,1),半径r=2.再根据切线到圆心的距离等于半径,利用点到直线的距离公式加以计算,并结合分类讨论可得所求的切线方程.
解答:解:圆x2+y2-6x-2y+6=0化成标准方程,得(x-3)2+(y-1)2=4.
∴圆心为C(3,1),半径r=2.
当经过点P(1,-2)的直线与x轴垂直时,方程为x=1,恰好到圆心C到直线的距离等于半径,
此时直线与圆相切,符合题意;
当经过点P(1,-2)的直线与x轴不垂直时,设方程为y+2=k(x-1),即kx-y-k-2=0
由圆C到直线的距离d=r,得
|3k-1-k-2|
1+k2
=2
,解之得k=
5
12

此时直线的方程为y+2=
5
12
(x-1),化简得5x-12y-29=0.
综上所述,得所求的切线方程为x=1或5x-12y-29=0.
故答案为:x=1或5x-12y-29=0.
点评:本题给出直线经过定点,求直线与圆相切时直线的方程.着重考查了直线的方程、圆的方程、直线与圆的位置关系等知识点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
4
+
y2
9
=1
上任一点P,由点P向x轴作垂线段PQ,垂足为Q,点M在PQ上,且
PM
=2
MQ
,点M的轨迹为C.
(1)求曲线C的方程;
(2)过点D(0,-2)作直线l与曲线C交于A、B两点,设N是过点(0,-
4
17
)
且平行于x轴的直线上一动点,满足
ON
=
OA
+
OB
(O为原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线的方程;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
5
3
,短轴一个端点到右焦点的距离为3.
(1)求椭圆C的方程;
(2)过椭圆C上的动点P引圆O:x2+y2=b2的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)圆C:x2+y2+Dx+Ey+F=0的外部有一点P(x0,y0),求由点P向圆引切线的长度;
(2)在直线2x+y+3=0上求一点P,使由P向圆x2+y2-4x=0引得的切线长度为最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,焦点在坐标轴上,且过A(-2,0)、B(2,0)、C(1,
3
2
)三点.
(1)求椭圆C的方程;
(2)设点P是射线y=
2
x(x≥
2
3
)
上(非端点)任意一点,由点P向椭圆C引两条切线PQ、PT(Q、T为切点),求证:直线QT的斜率为常数.

查看答案和解析>>

同步练习册答案