精英家教网 > 高中数学 > 题目详情
12.已知正三角形ABC的边长为2,则△ABC的水平放置直观图△A′B′C′的面积为$\frac{\sqrt{6}}{4}$.

分析 按照斜二测画法规则画出直观图,进一步求直观图的面积即可.

解答 解:如图①、②所示的实际图形和直观图.

由②可知,A′B′=AB=2,O′C′=$\frac{1}{2}$OC=$\frac{\sqrt{3}}{2}$,
在图②中作C′D′⊥A′B′于D′,则C′D′=$\frac{\sqrt{6}}{4}$,
∴S△A′B′C′=$\frac{1}{2}$A′B′•C′D′=$\frac{\sqrt{6}}{4}$.
故答案为:$\frac{\sqrt{6}}{4}$.

点评 本题考查水平放置的平面图形的直观图的画法,考查作图能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=ex-ax,其中e是自然对数的底数,a∈R.
(1)若函数y=f(x)的图象在x=ln2处的切线l的倾斜角为0,求切线l的方程;
(2)记函数y=f(x)图象为曲线C,设点A(x1,f(x1)),B(x2,f(x2))(x1<x2)是曲线C上不同的两定点,记直线AB的斜率为k.
①若x1=-x2,点M为线段AB的中点,过点M作x轴的垂线交曲线C于点N,试问,曲线C在点N处的切线是否平行于直线AB?请说明理由;
②是否存在x0∈(x1,x2),使f′(x0)<k?若存在,求x0的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设f(x)=lg$\frac{1+{2}^{x}+{3}^{x}•a}{3}$(a∈R),如果当x∈(-∞,1)时f(x)有意义,则a的取值范围是[-1,+∞)..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,已知向量$\overrightarrow{m}$=(AB,cosB),$\overrightarrow{n}$=(AC,cosC),若$\overrightarrow{m}$∥$\overrightarrow{n}$,则△ABC为(  )
A.等腰三角形B.直角三角形
C.等腰三角形或直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={x|x2-2x-15≤0},B={x|m-2<x<2m-3},且B⊆(A∩B),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.两个非零向量$\overrightarrow{a}$、$\overrightarrow{b}$不共线.
(1)若$\overrightarrow{AB}$=$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{BC}$=2$\overrightarrow{a}$+8$\overrightarrow{b}$,$\overrightarrow{CD}$=3($\overrightarrow{a}$-$\overrightarrow{b}$),求证:A、B、D三点共线;
(2)求实数k使k$\overrightarrow{a}$+$\overrightarrow{b}$与2$\overrightarrow{a}$+k$\overrightarrow{b}$共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知在三棱锥S-ABC中,∠ACB=90°,又SA⊥平面ABC,AD⊥SC于D,求证:
(1)面SAC⊥面SBC
(2)AD⊥平面SBC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将函数y=sin2x的图象向右平移$\frac{π}{4}$个单位,再向上平移1个单位,所得函数图象对应的解析式为(  )
A.y=sin(2x-$\frac{π}{4}$)+1B.y=2cos2xC.y=1-cos2xD.y=-cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若自然数n使得n+(n+1)+(n+2)作竖式加法不产生进位现象,则称n为“良数”.例如32是“良数”,因为32+33+34 不产生进位现象;23 不是“良数”,因为23+24+25产生进位现象,那么小于1000的“良数”的个数为48.

查看答案和解析>>

同步练习册答案