精英家教网 > 高中数学 > 题目详情

设两非零向量e1e2不共线.

(1)如果e1e2=2e1+8e2=3(e1e2),求证:ABD三点共线;

(2)试确定实数k,使ke1e2e1+ke2共线.

答案:
解析:

  =5(e1e2)=5,所以A,B,D三点共线.

  (2)由ke1e2e1+ke2共线,得ke1e2=λ(e1+ke2),即k=λ且1=kλ,所以k=±1.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设两非零向量e1和e2不共线.
(1)如果
AB
=e1+e2
BC
=2e1+8e2
CD
=3(e1-e2),求证:A、B、D三点共线;
(2)试确定实数k,使ke1+e2和e1+ke2共线;
(3)若|e1|=2,|e2|=3,e1与e2的夹角为60°,试确定k的值,使ke1+e2与e1+ke2垂直.

查看答案和解析>>

科目:高中数学 来源:2012年苏教版高中数学必修4 2.5向量的应用练习卷(解析版) 题型:解答题

设两非零向量e1和e2不共线.

(1)如果+ ,=2 +8 ,=3(-),求证:A、B、D三点共线;

(2)试确定实数k,使k + +k 共线;

(3)若| |=2,| |=3, 的夹角为60°,试确定k的值,使k + +k 垂直.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设两非零向量e1和e2不共线.
(1)如果
AB
=e1+e2
BC
=2e1+8e2
CD
=3(e1-e2),求证:A、B、D三点共线;
(2)试确定实数k,使ke1+e2和e1+ke2共线;
(3)若|e1|=2,|e2|=3,e1与e2的夹角为60°,试确定k的值,使ke1+e2与e1+ke2垂直.

查看答案和解析>>

科目:高中数学 来源:《2.4-2.5 平面向量的数量积及平面向量的应用举例》2011年同步练习(解析版) 题型:解答题

设两非零向量e1和e2不共线.
(1)如果=e1+e2=2e1+8e2=3(e1-e2),求证:A、B、D三点共线;
(2)试确定实数k,使ke1+e2和e1+ke2共线;
(3)若|e1|=2,|e2|=3,e1与e2的夹角为60°,试确定k的值,使ke1+e2与e1+ke2垂直.

查看答案和解析>>

同步练习册答案