精英家教网 > 高中数学 > 题目详情
证明:<1++++…+<n+1(n>1),当n=2时,中间式子等于( )
A.1
B.1+
C.1++
D.1+++
【答案】分析:分析式子1++++…+ 的结构特点,式子第一项的分母是1,末项的分母为,且相邻的项分母递增1.
解答:解:中间式子第一项的分母是1,末项的分母为,且相邻的项分母递增1,
当n=2时,中间式子等于 1+++
故选D.
点评:本题考查式子1++++…+ 的结构特点,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

利用数学归纳法证明不等式
1
n+1
+
1
n+2
+…+
1
n+n
13
14
时,由k递推到k+1时,左边应添加的因式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x-1)2,g(x)=4(x-1),数列{an}满足a1=2,且(an+1-an)g(an)+f(an)=0.
(1)试探究数列{an-1}是否是等比数列;
(2)试证明
ni=1
ai≥1+n

(3)设bn=3f(an)-g(an+1),试探究数列{bn}是否存在最大项和最小项.若存在求出最大项和最小项,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明(n+1)(n+2)(n+3)…(n+n)=2n•1•2•3•…•(2n-1)(n∈N*),从n=k到n=k+1,左边的式子之比是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

我们知道,对一个量用两种方法分别算一次,由结果相同可以构造等式,这是一种非常有用的思想方法--“算两次”(G.Fubini原理),如小学有列方程解应用题,中学有等积法求高…
请结合二项式定理,利用等式(1+x)n•(1+x)n=(1+x)2n(n∈N*
证明:
(1)
n
r=0
(
C
r
n
)2=
C
n
2n
;  
(2)
m
r=0
(
C
r
n
C
m-r
n
)=
C
m
2n

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在[x1,x2]上的函数y=f (x)的图象为C,C的端点为A,B,P (x,y)为C上任意一点,若
OA
=(x1,y1),
OB
=(x2,y2),且x=λx1+(1-λ)x2;记
OM
OA
+(1-λ)
OB
,现定义“当|
PM
|≤k
(k为正的常数)恒成立时,称函数y=f (x)在[x1,x2]上可在标准k下线性近似”.
(1)证明:0≤λ≤1;
(2)请给出一个标准k的范围,使得在[0,1]上的函数y=x2与y=x3中有且只有一个可在标准k下线性近似.

查看答案和解析>>

同步练习册答案