精英家教网 > 高中数学 > 题目详情
精英家教网如图三棱柱ABC-A1B1C1中,E,F分别是AB、AC的中点,平面EFC1B1将三棱柱分成体积为V1,V2(左为V1,右为V2)两部分,则V1:V2=(  )
A、7:5B、4:3C、3:1D、2:1
分析:设AEF面积为s1,ABC和A1B1C1的面积为s,三棱柱高位h;VAEF-A1B1C1=V1;VBCFE-B1C1=V2;总体积为:V,根据棱台体积公式求V1;V2=V-V1以及面积关系,求出体积之比.
解答:解:由题:设AEF面积为s1,ABC和A1B1C1的面积为s,三棱柱高位h;VAEF-A1B1C1=V1
VBCFE-B1C1=V2;总体积为:V
计算体积:
V1=
1
3
h(s1+s+
s1s
)①
V=sh ②
V2=V-V1
由题意可知,s1=
s
4

根据①②③④解方程可得:V1=
7
12
sh,V2=
5
12
sh;则
V1
V2
=
7
5

故选A.
点评:本题考查的知识点是棱柱的体积,棱台的体积,组合体的体积,其中分析出面EB'C'F将三棱柱分成一个棱台(体积为V1)和一个不规则几何体,(体积为V2),是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图三棱柱ABC-A1B1C1中,侧棱BB1与底面成60.角,AQ⊥底面A1B1C1于Q,AP⊥侧面BCC1B1于P,且A1Q⊥B1C1,AB=AC,AQ=3,AP=2则顶点A到棱B1C1的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图三棱柱ABC-A1B1C1的六个顶点上各安装一个灯泡,要求同一条线段的两端的灯泡颜色不同,则每种颜色的灯泡至少用一个的安装方法共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:044

如图三棱柱ABC-A¢B¢C¢底面ABC是边长为a的正三角形,侧面ABB¢A¢是菱形,且ÐA¢AB=60°MA¢B¢中点,已知BM^AC

    1)求证:BM^平面ABC

    2)证明:平面ABB¢A¢^平面ABC

    3)求异面直线AA¢BC所成角的大小.

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

如图三棱柱ABC-A¢B¢C¢底面ABC是边长为a的正三角形,侧面ABB¢A¢是菱形,且ÐA¢AB=60°MA¢B¢中点,已知BM^AC

    1)求证:BM^平面ABC

    2)证明:平面ABB¢A¢^平面ABC

    3)求异面直线AA¢BC所成角的大小.

查看答案和解析>>

同步练习册答案