精英家教网 > 高中数学 > 题目详情
13.下列四个判断:?
①某校高三(1)班的人数和高三(2)班的人数分别是m和n,某次数学测试平均分分别是a,b,则这两个班的数学平均分为$\frac{a+b}{2}$;?
②从总体中抽取的样本(1,2.5),(2,3.1),(4,3.9),(5,4.4),则回归直线y=bx+a必过点(3,3.6);
③在频率分布直方图中,众数左边和右边的所有直方图的面积相等.
其中正确的个数有(  )
A.0个B.1个C.2个D.3个

分析 求出两个班的数学平均分判断①;由线性回归直线方程恒过样本中心点判断②;由频率分布直方图中,中位数左边和右边的所有直方图的面积相等判断③.

解答 解:①某校高三(1)班的人数和高三(2)班的人数分别是m和n,某次数学测试平均分分别是a,b,则这两个班的数学平均分为$\frac{ma+nb}{m+n}$,故①错误;?
②从总体中抽取的样本(1,2.5),(2,3.1),(4,3.9),(5,4.4),则样本中心点为(3,3.475),回归直线y=bx+a必过点(3,3.475),故②错误;
③在频率分布直方图中,中位数左边和右边的所有直方图的面积相等,故③错误.
∴正确命题的个数是0个.
故选:A.

点评 本题考查命题的真假判断与应用,考查了统计中基础知识的掌握,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.如图,在正方体..中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的正(主)视图与侧(左)视图的面积的比值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>1)的焦距为2,过短轴的一个端点与两个焦点的圆的面积为$\frac{4}{3}$π,过椭圆C的右焦点作斜率为k(k≠0)的直线l与椭圆C相交于A、B两点,线段AB的中点为P.
(1)求椭圆C的标准方程;
(2)过点P垂直于AB的直线与x轴交于点D,且|DP|=$\frac{3\sqrt{2}}{7}$,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设x、y、z分别表示甲、乙、丙3个盒子中的球数..
(1)求掷完3次后,x=0,y=1,z=2的概率;
(2)记ξ=x+z,求随机变量ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l:x-y-1=0,以原点O为极点,x轴非负半轴为极轴,取相同长度单位建立极坐标系,曲线C的极坐标方程为ρ2-4ρsinθ=5.
(Ⅰ)将直线l写成参数方程$\left\{{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}}\right.$(t为参数,α∈[0,π))的形式,并求曲线C的直角坐标方程;
(Ⅱ)设直线l与曲线C交于点A,B(点A在第一象限)两点,若点M的直角坐标为(1,0),求△OMA的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,空间四边形OABC中,E,F分别为OA,BC的中点,设$\overrightarrow{OA}$=a,$\overrightarrow{OB}$=b,$\overrightarrow{OC}$=c,试用a,b,c表示$\overrightarrow{EF}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法中正确的是(  )
A.命题“?x∈R.ex>0”的否定是“?x∈R,ex>0”
B.命题“若a=-1,则函数f(x)=ax2+2x-1只有一个零点”的逆命题是真命题
C.“x2+2x≥ax在x∈[1,2]上恒成立”?“对于x∈[1,2]有(x2+2x)min≥(ax)max
D.命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$\vec a=(3,4)$,$\vec b=(9,x)$,$\vec c=(4,y)$且$\vec a∥\vec b$,$\vec a⊥\vec c$.
(1)求$\overrightarrow{b}$与$\overrightarrow{c}$;
(2)若$\vec m=2\vec a-\vec b$,$\vec n=\vec a+\vec c$,求向量$\overrightarrow{m}$与$\overrightarrow{n}$的夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在矩形ABCD中,AB=2,AD=1,点P为矩形ABCD内一点,则使得$\overrightarrow{AP}$•$\overrightarrow{AC}$≥1的概率为$\frac{7}{8}$.

查看答案和解析>>

同步练习册答案