【题目】在直角坐标系中,曲线的参数方程为为参数,,直线的参数方程为 为参数).
(1)若与相交,求实数的取值范围;
(2)若,设点在曲线上,求点到的距离的最大值,并求此时点的坐标.
科目:高中数学 来源: 题型:
【题目】某支上市股票在30天内每股的交易价格(单位:元)与时间(单位:天)组成有序数对,点落在如图所示的两条线段上.该股票在30天内(包括30天)的日交易量(单位:万股)与时间(单位:天)的部分数据如下表所示:
第天 | 4 | 10 | 16 | 22 |
(万股) | 36 | 30 | 24 | 18 |
(Ⅰ)根据所提供的图象,写出该种股票每股的交易价格与时间所满足的函数解析式;
(Ⅱ)根据表中数据确定日交易量与时间的一次函数解析式;
(Ⅲ)若用(万元)表示该股票日交易额,请写出关于时间的函数解析式,并求出在这30天中,第几天的日交易额最大,最大值是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下列四个说法中:
①与表示同一函数;
②已知函数的定义域为,则的定义域为;
③不等式对于恒成立,则的取值范围是;
④对于集合,,
若,则的取值范围,其中正确说法的序号是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.2018年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本2500万元,每生产x(百辆),需另投入成本万元,且.由市场调研知,每辆车售价5万元,且全年内生产的车辆当年能全部销售完.
(1)求出2018年的利润L(x)(万元)关于年产量x(百辆)的函数关系式;(利润=销售额-成本)
(2)2018年产量为多少百辆时,企业所获利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知整数对排列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4)......则第60个整数对是( )
A.(5,7)B.(11,5)C.(7,5)D.(5,11)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l:(2+m)x+(1﹣2m)y+4﹣3m=0.
(1)求证:不论m为何实数,直线l恒过一定点M;
(2)过定点M作一条直线l1,使夹在两坐标轴之间的线段被M点平分,求直线l1的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:函数f(x)=lg(x2+ax+1)的定义域为R;命题q:函数f(x)=x2﹣2ax﹣1在(﹣∞,﹣1]上单调递减.
(1)若命题“p∨q”为真,“p∧q”为假,求实数a的取值范围;
(2)若关于x的不等式(x﹣m)(x﹣m+5)<0(m∈R)的解集为M;命题p为真命题时,a的取值集合为N.当M∪N=M时,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4 极坐标与参数方程
在平面直角坐标系中,曲线的参数方程为 (其中为参数).以坐标原点为极点, 轴正半轴为极轴建立极坐标系并取相同的单位长度,圆 的极坐标方程为.
(1)求曲线的方程普通方程和的直角坐标方程;
(2)过圆的圆心,倾斜角为的直线与曲线交于A,B两点,求
的值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com