分析:直接把函数式中的自变量换成3,即可求得所求的函数值.
解答:解:由
f(x)= 可得,
则f(3)=
=2,
故选 A.
点评:本题考查求函数值的方法,直接代入法.
练习册系列答案
相关习题
科目:高中数学
来源:
题型:
设函数f(x)=a
2x
2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
,求a的值;
(2)关于x的不等式(x-1)
2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设
a=,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学
来源:徐州模拟
题型:解答题
设函数f(x)=a
2x
2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2,求a的值;
(2)关于x的不等式(x-1)
2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设
a=,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学
来源:0103 期中题
题型:填空题
下列说法:
①若f(x)=ax2+(2a+b)x+2 (其中x∈[2a-1,a+4])是偶函数,则实数b=2;
②是奇函数又是偶函数;
③已知f(x)是定义在R上的奇函数,若当x∈[0,+∞)时,f(x)=x(1+x),则当x∈R时,f(x)=x(1+|x|);
④已知f(x)是定义在R上的不恒为零的函数,且对任意的x,y∈R都满足f(xy)=xf(y)+yf(x),则f(x)是奇函数;
其中所有正确说法的序号是( )。
查看答案和解析>>
科目:高中数学
来源:0119 期中题
题型:填空题
下列说法:①若f(x)=ax
2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函数,则实数b=2;
②
既是奇函数又是偶函数;
③已知f(x)是定义在R上的奇函数,若当x∈[0,+∞)时,f(x)=x(1+x),则当x∈R时,f(x)=x(1+|x|);
④已知f(x)是定义在R上的不恒为零的函数,且对任意的x,y∈R都满足f(x·y)=x·f(y)+y·f(x),则f(x)是奇函数;
其中所有正确命题的序号是( )。
查看答案和解析>>