精英家教网 > 高中数学 > 题目详情
17.如图所示,△ABC是边长为2的正三角形,BC∥平面α,且A、B、C在平面α的同侧,它们在α内的正射影分别是A′、B′、C′,且△A′B′C′是Rt△,BC到α的距离为5.
(1)求点A到平面α的距离;
(2)求平面ABC与平面α所成较小二面角的余弦值.

分析 (1)过A作AD⊥BB′于D,AE⊥CC′于E,推导出∠C'A′B′=90°,由此能求出A点到平面α的距离.
(2)以A′为原点,射线A′B′,A′C′,A′A分别为x,y,z轴正方向建立空间直角坐标系,利用向量法能求出平面ABC与平面α所成较小二面角的余弦值.

解答 解:(1)如图,过A作AD⊥BB′于D,AE⊥CC′于E.
由题意知BB′=CC′=5,B′C′=2    …2′
设AA′=x,则BD=5-x,CE=5-x,
∴${A}^{'}{B}^{'}=AD=AE={A}^{'}{C}^{'}=\sqrt{4-(5-x)^{2}}$,∠C'A′B′=90°,…4′
∵B′C′=2,∴4-(5-x)2=2,
∴x=5-$\sqrt{2}$或x=5+$\sqrt{2}$(舍),
∴A点到平面α的距离为5-$\sqrt{2}$.…6′
(2)以A′为原点,射线A′B′,A′C′,A′A分别为x,y,z轴正方向建立空间直角坐标系   …7′
由(1)可知:A′(0,0,0),${B}^{'}(\sqrt{2},0,0),{C}^{'}(0,\sqrt{2},0)$,
A(0,0,5-$\sqrt{2}$),B($\sqrt{2},0,5$),
C(0,$\sqrt{2}$,5),…8′
平面A′B′C′的法向量为$\overrightarrow{m}$=(0,0,1),…9′
$\overrightarrow{AB}$=($\sqrt{2},0,\sqrt{2}$),$\overrightarrow{AC}$=(0,$\sqrt{2}$,$\sqrt{2}$),
设平面ABC的法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=\sqrt{2}x+\sqrt{2}z=0}\\{\overrightarrow{n}•\overrightarrow{AC}=\sqrt{2}y+\sqrt{2}z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,1,-1),
设平面ABC与平面α所成较小二面角为θ,…10′
则 cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=-$\frac{\sqrt{3}}{3}$,…11′
∴平面ABC与平面α所成较小二面角的余弦值为$\frac{\sqrt{3}}{3}$.…12′

点评 本题考查点到平面的距离的求法,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.卵形线是常见曲线的一种,分笛卡尔卵形线和卡西尼卵形线,卡西尼卵形线是平面内与两个定点(叫做焦点)距离之积等于常数的点的轨迹.某同学类比椭圆与双曲线对卡西尼卵形线进行了相关性质的探究,设焦点F1(-c,0),F2(c,0)是平面内两个定点,|PF1|•|PF2|=a2(a是定长),得出卡西尼卵形线的相关结论:
①当a=0,c=1时,次轨迹为两个点F1(-1,0),F2(1,0);
②若a=c,则曲线过原点;
③若0<a<c,则曲线不存在;
④既是轴对称也是中心对称图形.
其中正确命题的序号是①②③④.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(文)试卷(解析版) 题型:填空题

为抛物线上的两动点,且线段的长为6,为线段的中点,则点轴的最短距离为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直线经过点P(-1,2),倾斜角α=$\frac{3π}{4}$.
(1)写出直线的参数方程;
(2)设l与抛物线y=x2相交于A、B两点,求线段AB的长和点P到A、B两点的距离之积;
(3)求线段AB中点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≤1}\\{-{x}^{2}+4x-\frac{5}{2},x>1}\end{array}\right.$,若函数y=f(x)-a恰有3个零点,则实数a的取值范围是(  )
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,$\frac{3}{2}$)C.($\frac{1}{2}$,$\frac{5}{2}$)D.($\frac{3}{2}$,$\frac{5}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax-(a+1)lnx,a∈R.
(I)当a=1时,求函数f(x)的图象在(1,f(1))处的切线方程;
(Ⅱ)当a∈(0,1),x∈[1,e]时,比较f(x)与$\frac{1}{x}$+1的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.$\sqrt{5}$B.2$\sqrt{5}$C.3$\sqrt{5}$D.4$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.分解因式:a4-4a2-4a-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,PA⊥ABCD,AB∥CD,AB⊥AD,CD=2AB=PA=AD=2,E,F是CD,PC的中点.
(1)求证:BE∥平面PAD;
(2)求异面直线BE与PD所成的角;
(3)求三棱锥C-BEF的体积.

查看答案和解析>>

同步练习册答案