【题目】关于旋转体的体积,有如下的古尔丁(guldin)定理:“平面上一区域D绕区域外一直线(区域D的每个点在直线的同侧,含直线上)旋转一周所得的旋转体的体积,等于D的面积与D的几何中心(也称为重心)所经过的路程的乘积”.利用这一定理,可求得半圆盘,绕直线x旋转一周所形成的空间图形的体积为_____.
科目:高中数学 来源: 题型:
【题目】我国古达数学名著《九章算术-商功》中阐述:“斜解立方,得两堑堵,斜解堑堵,其一为阳马,一为鳖觸,阳马居二,鳖属居一.不易之率也。合两鳖觸三而一,验之以基,其形露矣,”若称为“阳马”的某几何体的三视图如图所示 图中网格纸上小正方形的边长为. 则对该儿何体描述:
①四个侧面首饰直角三角形
②最长的侧棱长为
③四个侧面中有三个侧面是全等的直角三角形
④外接球的表面积为
其中正确的个数为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《郑州市城市生活垃圾分类管理办法》已经政府常务会议审议通过,自2019年12月1日起施行.垃圾分类是对垃圾收集处置传统方式的改革,是对垃圾进行有效处置的一种科学管理方法.所谓垃圾其实都是资源,当你放错了位置时它才是垃圾.某企业在市科研部门的支持下进行研究,把厨余垃圾加工处理为一种可销售的产品.已知该企业每周的加工处理量最少为75吨,最多为100吨.周加工处理成本y(元)与周加工处理量x(吨)之间的函数关系可近似地表示为,且每加工处理一吨厨余垃圾得到的产品售价为16元.
(Ⅰ)该企业每周加工处理量为多少吨时,才能使每吨产品的平均加工处理成本最低?
(Ⅱ)该企业每周能否获利?如果获利,求出利润的最大值;如果不获利,则需要市政府至少补贴多少元才能使该企业不亏损?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,下顶点为,为椭圆的左、右焦点,过右焦点的直线与椭圆交于两点,且的周长为.
(I)求椭圆的方程;
(II)经过点的直线与椭圆交于不同的两点 (均异于点),试探求直线与的斜率之和是否为定值,证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的渐近线方程为,一个焦点为.
(1)求双曲线的方程;
(2)过双曲线上的任意一点,分别作这两条渐近线的平行线与这两条渐近线得到四边形,证明四边形的面积是一个定值;
(3)设直线与在第一象限内与渐近线所围成的三角形绕着轴旋转一周所得几何体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=m,点M是棱CD的中点.
(1)求异面直线B1C与AC1所成的角的大小;
(2)是否存在实数m,使得直线AC1与平面BMD1垂直?说明理由;
(3)设P是线段AC1上的一点(不含端点),满足λ,求λ的值,使得三棱锥B1﹣CD1C1与三棱锥B1﹣CD1P的体积相等.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两直线方程与,点在上运动,点在上运动,且线段的长为定值.
(Ⅰ)求线段的中点的轨迹方程;
(Ⅱ)设直线与点的轨迹相交于,两点,为坐标原点,若,求原点的直线的距离的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(Ⅰ)证明:PB∥平面AEC;
(Ⅱ)设PC与平面ABCD所成的角的正弦为,AP=1,AD=,求三棱锥E-ACD的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com