精英家教网 > 高中数学 > 题目详情

【题目】已知F1F2是椭圆Cab0)的左、右焦点,过椭圆的上顶点的直线x+y=1被椭圆截得的弦的中点坐标为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)过F1的直线l交椭圆于AB两点,当△ABF2面积最大时,求直线l的方程.

【答案】(Ⅰ)y2=1;(Ⅱ)xy0x+y0.

【解析】

(Ⅰ)根据直线椭圆的过上顶点,得b=1,再利用点差法以及弦中点坐标解得a2=3,即得椭圆方程;

(Ⅱ)先设直线l方程并与椭圆方程联立,结合韦达定理,并以|F1F2|为底边长求△ABF2面积函数关系式,在根据基本不等式求△ABF2面积最大值,进而确定直线l的方程.

(Ⅰ)直线x+y=1y轴的交于(01)点,∴b=1

设直线x+y=1与椭圆C交于点Mx1y1),Nx2y2),

x1+x2y1+y2

11

两式相减可得x1x2)(x1+x2y1y2)(y1+y2)=0

1

解得a2=3

∴椭圆C的方程为y2=1.

(Ⅱ)由(Ⅰ)可得F10),F20),设Ax3y3),Bx4y4),

可设直线l的方程x=my,将直线l的方程x=my代入y2=1,可得(m2+3y22my1=0

y3+y4y3y4

|y3y4|

|F1F2||y3y4|||y3y4|

当且仅当,即m1,△ABF2面积最大,

即直线l的方程为xy0x+y0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为

1)写出曲线C1C2的直角坐标方程;

2)已知P为曲线C2上的动点,过点P作曲线C1的切线,切点为A,求|PA|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】代表红球,代表蓝球,代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由的展开式表示出来,如:“1”表示一个球都不取、“”表示取出一个红球,而“”用表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个有区别的红球、5个无区别的蓝球、5个无区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在生活中,我们常看到各种各样的简易遮阳棚.现有直径为的圆面,在圆周上选定一个点固定在水平的地面上,然后将圆面撑起,使得圆面与南北方向的某一直线平行,做成简易遮阳棚.设正东方向射出的太阳光线与地面成角,若要使所遮阴影面的面积最大,那么圆面与阴影面所成角的大小为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线y2=4x的焦点的直线l与抛物线交于AB两点,设点M30.若△MAB的面积为,则|AB|=( )

A.2B.4C.D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代教育要求学生掌握六艺,即礼、乐、射、御、书、数.某校为弘扬中国传统文化,举行有关六艺的知识竞赛.甲、乙、丙三位同学进行了决赛.决赛规则:决赛共分场,每场比赛的第一名、第二名、第三名的得分分别为,选手最后得分为各场得分之和,决赛结果是甲最后得分为分,乙和丙最后得分都为分,且乙在其中一场比赛中获得第一名,现有下列说法:

①每场比赛第一名得分分;

②甲可能有一场比赛获得第二名;

③乙有四场比赛获得第三名;

④丙可能有一场比赛获得第一名.

则以上说法中正确的序号是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(甲),是边长为的等边三角形,点分别为的中点,将沿折成四棱锥,使,如图(乙).

1)求证:平面

2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某药业公司统计了2010-2019年这10年某种疾病的患者人数,结论如下:该疾病全国每年的患者人数都不低于100万,其中有3年的患者人数低于200万,有6年的患者人数不低于200万且低于300万,有1年的患者人数不低于300.

1)药业公司为了解一新药品对该疾病的疗效,选择了200名患者,随机平均分为两组作为实验组和对照组,实验结束时,有显著疗效的共110人,实验组中有显著疗效的比率为70.请完成如下的2×2列联表,并根据列联表判断是否有99.9%把握认为该药品对该疾病有显著疗效;

实验组

对照组

合计

有显著疗效

无显著疗效

合计

200

2)药业公司最多能引进3条新药品的生产线,据测算,公司按如下条件运行生产线:

该疾病患者人数(单位:万)

最多可运行生产线数

1

2

3

每运行一条生产线,可产生年利润6000万元,没运行的生产线毎条每年要亏损1000万元.根据该药业公司这10年的统计数据,将患者人数在以上三段的频率视为相应段的概率、假设各年的患者人数相互独立.欲使该药业公司年总利润的期望值达到最大,应引进多少条生产线?

附:参考公式:,其中.

0.05

0.025

0.010

0.001

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是t为参数),直线l与曲线C相交于AB两点.

1)求的长;

2)求点AB两点的距离之积.

查看答案和解析>>

同步练习册答案