【题目】一家小微企业生产某种小型产品的月固定成本为1万元,每生产1万件需要再投入2万元,假设该企业每个月可生产该小型产品万件并全部销售完,每万件的销售收入为万元,且每生产1万件政府给予补助万元.
(1)求该企业的月利润(万元)关于月产量(万件)的函数解析式;
(2)若月产量万件时,求企业在生产这种小型产品中所获得的月利润最大值(万元)及此时的月生产量值(万件).
(注:月利润=月销售收入+月政府补助月总成本)
科目:高中数学 来源: 题型:
【题目】已知函数,其中.
(Ⅰ)当时,求函数在点处的切线方程;
(Ⅱ)设函数的导函数是,若不等式对于任意的实数恒成立,求实数的取值范围;
(Ⅲ)设函数,是函数的导函数,若函数存在两个极值点,,且,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某民族品牌手机生产商为迎合市场需求,每年都会研发推出一款新型号手机.该公司现研发了一款新型智能手机并投入生产,生产这款手机的月固定成本为80万元,每生产1千台,须另投入27万元, 设该公司每月生产千台并能全部销售完,每1千台的销售收入为万元,且.为更好推广该产品,手机生产商每月还支付各类广告费用20万元.
(Ⅰ)写出月利润(万元)关于月产量(千台)的函数解析式;
(Ⅱ)当月产量为多少千台时,该公司在这一型号的手机生产中所获月利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从2011年到2018年参加“北约”,“华约”考试而获得加分的学生(每位学生只能参加“北约”,“华约”一种考试)人数可以通过以下表格反映出来.(为了方便计算,将2011年编号为1,2012年编号为2,依此类推……)
年份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
人数y | 2 | 3 | 4 | 4 | 7 | 7 | 6 | 6 |
(1)据悉,该校2018年获得加分的6位同学中,有1位获得加20分,2位获得加15分,3位获得加10分,从该6位同学中任取两位,记该两位同学获得的加分之和为X,求X的分布列及期望.
(2)根据最近五年的数据,利用最小二乘法求出y与x之间的线性回归方程,并用以预测该校2019年参加“北约”,“华约”考试而获得加分的学生人数.(结果要求四舍五入至个位)
参考公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C的参数方程为(m为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线的极坐标方程为
(1)求曲线C和直线的直角坐标系方程;
(2)已知直线与曲线C相交于A,B两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系.xOy中,曲线C1的参数方程为( 为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.
(1)求曲线C1的普通方程和C2的直角坐标方程;
(2)已知曲线C2的极坐标方程为,点A是曲线C3与C1的交点,点B是曲线C3与C2的交点,且A,B均异于原点O,且|AB|=4,求α的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线l的参数方程为 (t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)若直线l与曲线C相交于A,B两点,求△AOB的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣a(x2+x+1).
(1)当a=1时,证明:f(x)+x2≥0;
(2)当a时,判断函数f(x)的单调性;
(3)若函数f(x)有三个零点,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com