精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C的对边分别是a,b,c,若A:B:C=1:2:3,则a:b:c=(  )
A、1:2:3
B、2:3:4
C、3:4:5
D、1:
3
:2
考点:正弦定理
专题:解三角形
分析:求出三角形的内角,利用正弦定理直接求解即可.
解答: 解:在△ABC中,角A,B,C的对边分别是a,b,c,若A:B:C=1:2:3,
又A+B+C=π,
∴A=
π
6
,B=
π
3
,C=
π
2

由正弦定理可得a:b:c=sinA:sinB:sinC=
1
2
3
2
:1
=1:
3
:2.
故选:D.
点评:本题考查正弦定理的应用,三角形的内角和,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法中:
①23的立方根等于26的六次方根;
664
的运算结果是±2;
③根式
366-x
在实数范围内是没有意义的;
④根式
na
(n为正奇数)与根式
mam
(m为正整数)中,a的取值范围都是全体实数;
⑤不存在实数a,使得根式
a
+
4-a
在实数范围内有意义.
其中正确的个数有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列函数的奇偶性
(1)f(x)=|x+1|+|x-1|
(2)f(x)=
2x2+2x
x+1

(3)f(x)=
1-x2
+
x2-1

(4)f(x)=
1-x2
2-|x+2|

(5)f(x)=(x-1)
1+x
1-x

(6)f(x)=
x+3
0
-x+3
x<-1
|x|≤1
x>1

查看答案和解析>>

科目:高中数学 来源: 题型:

备受瞩目的巴西世界杯正在如火如荼的进行,为确保总决赛的顺利进行,组委会决定在位于里约热内卢的马拉卡纳体育场外临时围建一个矩形观众候场区,总面积为72m2(如图所示).要求矩形场地的一面利用体育场的外墙,其余三面用铁栏杆围,并且要在体育馆外墙对面留一个长度为2m的入口.现已知铁栏杆的租用费用为100元/m.设该矩形区域的长为x(单位:m),租用铁栏杆的总费用为y(单位:元)
(Ⅰ)将y表示为x的函数;
(Ⅱ)试确定x,使得租用此区域所用铁栏杆所需费用最小,并求出最小最小费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合S={x||x|<5},T={x|(x+7)(x-3)<0}.则S∩T=(  )
A、{x|-7<x<5 }
B、{x|3<x<5 }
C、{x|-5<x<3 }
D、{x|-7<x<-5 }

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(1+x),g(x)=loga(1-x),(a>0,且a≠1)
①判断函数F(x)=f(x)-g(x)的奇偶性,并证明.
②解不等式:F(x)=f(x)-g(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x),对任意的实数x都有f(x+2)=f(x+1)-f(x),且f(1)=lg3-lg2,f(2)=lg3+lg5,则f(2013)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是计算y=f(x)函数值的程序框图.   
(Ⅰ)请写出程序对应函数f(x)的表达式;
(Ⅱ)若输出的结果是正数,求输入的实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点A(-2,m)和B(m,4)的直线与直线l:x-2y-1=0垂直,则m的值为(  )
A、10B、2C、0D、-8

查看答案和解析>>

同步练习册答案