精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=$\frac{\sqrt{4-{x}^{2}}}{|x+3|-3}$,若f(a)=$\frac{5\sqrt{7}}{3}$,则f(-a)=(  )
A.$\frac{5\sqrt{7}}{3}$B.-$\frac{5\sqrt{7}}{3}$C.2$\sqrt{7}$D.4$\sqrt{7}$

分析 先确定函数的定义域,进而去掉绝对值,再根据函数奇偶性确定函数值.

解答 解:函数f(x)自变量x需满足$\left\{\begin{array}{l}{4-x^2≥0}\\{|x+3|≠3}\end{array}\right.$,
解得,x∈[-2,0)∪(0,2],
此时,x+3>0恒成立,所以f(x)=$\frac{\sqrt{4-x^2}}{x}$,
而f(-x)=-$\frac{\sqrt{4-x^2}}{x}$=-f(x),所以f(x)为奇函数,
因此,f(-a)=-f(a)=-$\frac{5\sqrt{7}}{3}$,
故选:B.

点评 本题主要考查了函数奇偶性的性质,涉及函数定义域的求法,函数值的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知tanα是关于x的方程2x2-x-1=0的一个实根,且α是第三象限角.
(1)求$\frac{2sinα-cosα}{sinα+cosα}$的值;
(2)求cosα+sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.作已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点为F1,F2,离心率为$\frac{\sqrt{2}}{2}$,过F2的直线l交C于M,N两点,若△MF1N的周长为8.
(1)求椭圆C的标准方程;
(2)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知顶点在原点,焦点在y轴上的抛物线被直线x-2y-1=0截得的弦长为$\sqrt{15}$,求此抛物线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知角α终边与单位圆的交点坐标为(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),那么sinα=$\frac{1}{2}$,cosα=-.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{3}$x3-ax2+1在x=2处取得极值,求:
(1)实数a的值;
(2)f(x)在区间[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下表是某公司1-8月份的销售额,通过回归分析得出回归方程为$\widehat{y}$=0.96x+4.54,预测9月份的销售额是(  )万元.
月份12345678
万元5688.510.511.58.513
A.13B.13.18C.13.5D.14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若函数f(x)=log2$\frac{x{-a}^{\frac{1}{2}}}{x{-a}^{\frac{1}{3}}}$且0<a<1
(1)写出f(x)的定义域;
(2)若f(x)定义域关于点($\frac{1}{2}$${a}^{\frac{1}{2}}$+$\frac{1}{4}$${a}^{\frac{1}{6}}$,0)对称,求a的值;
(3)在(2)条件下,写出f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.m∈R,“函数y=2x+m-1没有零点”是“对任意的x>1,logmx>0恒成立”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案