精英家教网 > 高中数学 > 题目详情

定义:将一个数列中部分项按原来的先后次序排列所成的一个新数列称为原数列的一个子数列.已知无穷等比数列{an}的首项和公比均为

(1)试求无穷等比子数列{a3k-1}(k∈N*)各项的和;

(2)已知数列{an}的一个无穷等比子数列各项的和为,求这个子数列的通项公式;

(3)证明:在数列{an}的所有子数列中,不存在两个不同的无穷等比子数列,使得它们各项的和相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•普陀区一模)定义:将一个数列中部分项按原来的先后次序排列所成的一个新数列称为原数列的一个子数列.
已知无穷等比数列{an}的首项、公比均为
1
2

(1)试求无穷等比子数列{a3k-1}(k∈N*)各项的和;
(2)是否存在数列{an}的一个无穷等比子数列,使得它各项的和为
1
7
?若存在,求出满足条件的子数列的通项公式;若不存在,请说明理由;
(3)试设计一个数学问题,研究:是否存在数列{an}的两个不同的无穷等比子数列,使得其各项和之间满足某种关系.请写出你的问题以及问题的研究过程和研究结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年雅礼中学月考理)(13分)

定义:将一个数列中部分项按原来的先后次序排列所成的一个新数列称为原数列的一个子数列.已知无穷等比数列的首项和公比均为

   (1)试求无穷等比子数列)各项的和;

   (2)已知数列的一个无穷等比子数列各项的和为,求这个子数列的通项公式;

   (3)证明:在数列的所有子数列中,不存在两个不同的无穷等比子数列,使得它们各项的和相等.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义:将一个数列中部分项按原来的先后次序排列所成的一个新数列称为原数列的一个子数列.
已知无穷等比数列{an}的首项、公比均为数学公式
(1)试求无穷等比子数列{a3k-1}(k∈N*)各项的和;
(2)是否存在数列{an}的一个无穷等比子数列,使得它各项的和为数学公式?若存在,求出满足条件的子数列的通项公式;若不存在,请说明理由;
(3)试设计一个数学问题,研究:是否存在数列{an}的两个不同的无穷等比子数列,使得其各项和之间满足某种关系.请写出你的问题以及问题的研究过程和研究结论.

查看答案和解析>>

科目:高中数学 来源:2009年上海市普陀区高考数学一模试卷(理科)(解析版) 题型:解答题

定义:将一个数列中部分项按原来的先后次序排列所成的一个新数列称为原数列的一个子数列.
已知无穷等比数列{an}的首项、公比均为
(1)试求无穷等比子数列{a3k-1}(k∈N*)各项的和;
(2)是否存在数列{an}的一个无穷等比子数列,使得它各项的和为?若存在,求出满足条件的子数列的通项公式;若不存在,请说明理由;
(3)试设计一个数学问题,研究:是否存在数列{an}的两个不同的无穷等比子数列,使得其各项和之间满足某种关系.请写出你的问题以及问题的研究过程和研究结论.

查看答案和解析>>

科目:高中数学 来源:2009年上海市普陀区高考数学一模试卷(文科)(解析版) 题型:解答题

定义:将一个数列中部分项按原来的先后次序排列所成的一个新数列称为原数列的一个子数列.
已知无穷等比数列{an}的首项、公比均为
(1)试求无穷等比子数列{a3k-1}(k∈N*)各项的和;
(2)是否存在数列{an}的一个无穷等比子数列,使得它各项的和为?若存在,求出满足条件的子数列的通项公式;若不存在,请说明理由;
(3)试设计一个数学问题,研究:是否存在数列{an}的两个不同的无穷等比子数列,使得其各项和之间满足某种关系.请写出你的问题以及问题的研究过程和研究结论.

查看答案和解析>>

同步练习册答案