精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,点F为椭圆的右焦点,点A、B分别为椭圆的左、右顶点,点M为椭圆的上顶点,且满足
MF
FB
=
2
-1

(1)求椭圆C的方程;
(2)是否存在直线l,当直线l交椭圆于P、Q两点时,使点F恰为△PQM的垂心.若存在,求出直线l的方程;若不存在,请说明理由.
(1)根据题意得,F(c,0),A(-a,0),B(a,0),M(0,b)
MF
=(c,-b),
FB
=(a-c,0)

MF
FB
=ac-c2=
2
-1
(2分)
e=
c
a
=
2
2

a=
2
c

2
c2-c2=
2
-1

∴c2=1,a2=2,b2=1
∴椭圆C的方程为
x2
2
+y2=1
.(4分)
(2)假设存在直线l满足条件,使F是三角形MPQ的垂心.
因为KMF=-1,且FM⊥l,
所以k1=1,
所以设PQ直线y=x+m,
且设P(x1,y1),Q(x2),y2
y=x+m
x2
2
+y2=1

消y,得3x2+4mx+2m2-2=0
△=16m2-12(2m2-2)>0,m2<3x1+x2=-
4m
3
x1x2=
2m2-2
3

y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2=
2m2-2
3
-
4m2
3
+m2=
m2-2
3
.(8分)
又F为△MPQ的垂心,
∴PF⊥MQ,∴
PF
MQ
=0

PF
(1-x1,-y1),
MQ
=(x2y2-1)

PF
MQ
=x2+y1-x1x2-y1y2=x2+x1+m-x1x2-y1y2
=-
4
3
m+m-
2m2-2
3
-
m2-2
3
=0
-
m
3
-m2+
4
3
=0

3m2+m-4=0,m=-
4
3
,m=1
(10分)
经检验满足m2<3(11分)
∴存在满足条件直线l方程为:x-y+1=0,3x-3y-4=0(12分)
∵x-y+1=0过M点 即MP重合 不构成三角形,
∴3x-3y-4=0满足题意.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,半圆的直径的长为4,点平分弧,过的垂线交,交
(1)求证:
(2)若的角平分线,求的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知,在边长为1的正方形ABCD的一边上取一点E,使AE=AD,从AB的中点F作HF⊥EC于H.

(1)求证:FH=FA;
(2)求EH∶HC的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线l与椭圆
x2
36
+
y2
9
=1
交于A和B两点,点(4,2)是线段AB的中点,则直线l的方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若点P(2,-1)平分椭圆
x2
12
+
y2
8
=1
的一条弦,则该弦所在的直线方程为______.(结果写成一般式)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设椭圆
x2
a2
+
y2
b2
=1(a>b>0)长轴的右端点为A,短轴端点分别为B、C,另有抛物线y=x2+b.
(Ⅰ)若抛物线上存在点D,使四边形ABCD为菱形,求椭圆的方程;
(Ⅱ)若a=2,过点B作抛物线的切线,切点为P,直线PB与椭圆相交于另一点Q,求
|PQ|
|QB|
的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,称圆心在坐标原点O,半径为
a2+b2
的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是F1(-
2
,0),F2(
2
,0)

(1)若椭圆C上一动点M1满足|
M1F1
|+|
M1F2
|=4,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点P(0,t)(t<0)作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为2
3
,求P点的坐标;
(3)已知m+n=-
cosθ
sinθ
,mn=-
3
sinθ
(m≠n,θ∈
(0,π)),是否存在a,b,使椭圆C的“伴随圆”上的点到过两点(m,m2),(n,n2)的直线的最短距离dmin=
a2+b2-b
.若存在,求出a,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,⊙的直径延长线上的一点,过点作⊙的切线,切点为,连接,若               

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,AB和CD是圆的两条弦, AB与CD相交于点E,且,则 ______;______.

查看答案和解析>>

同步练习册答案