(本题满分18分)对于定义域为D的函数,如果存在区间,同时满足:
①在内是单调函数;
②当定义域是时,的值域也是.
则称是该函数的“和谐区间”.
(1)证明:是函数的一个“和谐区间”.
(2)求证:函数不存在“和谐区间”.
(3)已知:函数()有“和谐区间”,当变化时,求出的最大值.
科目:高中数学 来源: 题型:
(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分.
已知是公差为的等差数列,是公比为的等比数列.
(1) 若,是否存在,有说明理由;
(2) 找出所有数列和,使对一切,,并说明理由;
(3) 若试确定所有的,使数列中存在某个连续项的和是数列中的一项,请证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分18分)(理)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
已知函数是图像上的两点,横坐标为的点满足(为坐标原点).
(1)求证:为定值;
(2)若,
求的值;
(3)在(2)的条件下,若,为数列的前项和,若对一切都成立,试求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分10分。
若实数、、满足,则称比远离.
(1)若比1远离0,求的取值范围;
(2)对任意两个不相等的正数、,证明:比远离;
(3)已知函数的定义域.任取,等于和中远离0的那个值.写出函数的解析式,并指出它的基本性质(结论不要求证明).
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市徐汇区高三第一学期学习能力诊断卷理科数学 题型:解答题
(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分6分,
第3小题满分7分.
对定义在区间上的函数,若存在闭区间和常数,使得对任意的都有,且对任意的都有恒成立,则称函数为区间上的“U型”函数。
(1)求证:函数是上的“U型”函数;
(2)设是(1)中的“U型”函数,若不等式对一切的恒成立,
求实数的取值范围;
(3)若函数是区间上的“U型”函数,求实数和的值.
查看答案和解析>>
科目:高中数学 来源:上海市闵行区2010届高三第二次模拟考试数学理 题型:解答题
(本题满分18分)(理)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
已知函数是图像上的两点,横坐标为的点满足(为坐标原点).
(1)求证:为定值;
(2)若,
求的值;
(3)在(2)的条件下,若,为数列的前项和,若对一切都成立,试求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com