精英家教网 > 高中数学 > 题目详情
已知△ABC的顶点A(0,1),AB边上的中线CD所在的直线方程为2x-2y-1=0,AC边上的高BH所在直线的方程为y=0.
(1)求△ABC的顶点B、C的坐标;
(2)若圆M经过不同的三点A、B、P(m,0),且斜率为1的直线与圆M相切于点P,求圆M的方程;
(3)问圆M是否存在斜率为1的直线l,使l被圆M截得的弦为DE,以DE为直径的圆经过原点.若存在,写出直线l的方程;若不存在,说明理由.
(1)∵AC边上的高BH所在直线的方程为y=0,即为x轴,
∴直线AC的方程为y轴,即为直线x=0,又直线CD:2x-2y-1=0,
联立得:
x=0
2x-2y-1=0
解得:
x=0
y=-
1
2
∴C(0,-
1
2
),
设B(b,0),又A(0,1),
∴AB的中点D(
b
2
1
2
),
把D坐标代入方程2x-2y-1=0得:b-1-1=0,解得:b=2,
∴B(2,0);(4分)
(2)由A(0,1),B(2,0)可得:
线段AB中点坐标为(1,
1
2
),kAB=-
1
2

∴弦AB垂直平分线的斜率为2,
则圆M的弦AB的中垂线方程为4x-2y-3=0,①
又圆M与x-y+3=0相切,切点为(-3,0),且x-y+3=0的斜率为1,
∴圆心所在直线方程的斜率为-1,
则圆心所在直线为y-0=-x+3),即y+x+3=0,②
联立①②,
4x-2y-3=0
y+x+3=0

解得:
x=-
1
2
y=-
5
2
,∴M(-
1
2
-
5
2
),(6分)
∴半径|MA|=
1
4
+
49
4
=
50
2
,所以所求圆方程为(x+
1
2
2+(y+
5
2
2=
50
4

即x2+y2+x+5y-6=0.  (8分)
(3)假设存在直线l,不妨设所求直线l方程为y=x+k,D(x1,y1),E(x2,y2
联立方程
y=x+k
x2+y2+x+5y-6=0
得:2x2+(2k+6)x+k2+5k-6=0…(9分)
又△=(2k+6)2-8(k2+5k-6)>0得-7<k<3…(10分)
x1x2=
k2+5k-6
2
,x1+x2=-(k+3),y1y2=x1x2+k(x1+x2)+k2=
k2-k-6
2
…(11分)
依题意得   x1x2+y1y2=0…(12分)
故k2+2k-6=0解得:k1=-1+
7
k2=-1-
7
…(13分)
经验证,满足题意.
故所求直线方程为:y=x-1+
7
y=x-1-
7
…(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系xoy中,已知△ABC的顶点A(-1,0)和C(1,0),顶点B在椭圆
x2
4
+
y2
3
=1
上,则
sinA+sinC
sinB
的值是(  )
A、
3
2
B、
3
C、4
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点A(2,8),B(-4,0),C(6,0),
(1)求直线AB的斜率; 
(2)求BC边上的中线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点A,B的坐标分别为(-4,0),(4,0),C 为动点,且满足|AC|+|BC|=
54
|AB|
,求点C的轨迹方程,并说明它是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点A(1,3),AB边上的中线CM所在直线方程为2x-3y+2=0,AC边上的高BH所在直线方程为2x+3y-9=0.求:
(1)顶点C的坐标;
(2)直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点A(0,-4),B(0,4),且4(sinB-sinA)=3sinC,则顶点C的轨迹方程是
y2
9
-
x2
7
=1
(y>3)
y2
9
-
x2
7
=1
(y>3)

查看答案和解析>>

同步练习册答案