精英家教网 > 高中数学 > 题目详情
18.若原命题为“若a2>b2,则a>b>0”,则其逆命题,否命题,逆否命题真假性的判断依次如下,正确的为(  )
A.真,真,真B.假,假,真C.真,真,假D.假,假,假

分析 写出原命题的逆命题、否命题和逆否命题,并判断真假性.

解答 解:原命题为“若a2>b2,则a>b>0”,
则其逆命题是“若a>b>0,则a2>b2”,它是真命题;
否命题是“若a2≤b2,则a≤b或b≤0”,它是真命题;
逆否命题是“若a≤b或b≤0,则a2≤b2”,它是假命题.
故选:C.

点评 本题考查了四种命题之间的关系的应用问题,也考查了命题真假的判断问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.奇函数f(x)在(0,+∞)上单调递减且f(-2)=0,则满足xf(x)>0的x的范围是(  )
A.x<-2或0<x<2B.x<-2或x>2C.-2<x<0或0<x<2D.-2<x<0或x>2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设A={x|x≤-1或1<x<2},B={x|$\frac{x-a}{x-b}$≤0},已知A∩B={-3<x≤-1},A∪B={x|x<2},则a+b的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列{an}是各项均为正数的等比数列,a2=4,a1a4=32,数列{bn}满足:对任意的正整数n,都有a1b1+a2b2+…+anbn=(n-1)•2n+1+2.
(1)求数列{an}与{bn}的通项公式;
(2)若集合M={n|$\frac{{b}_{n}{b}_{n+1}}{{a}_{n}}$≥λ,n∈N*}中元素的个数为4,试求实数λ的取值范围;
(3)将数列{an}与{bn}按a1,b1,a2,b2,a3,b3,…,an,bn,…的顺序排好后,再删去其中小于2015的项,剩下的项按原来的顺序构成一个新数列{cn},试求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知单调递增数列{an}的前n项和为Sn,满足Sn=$\frac{1}{2}$(a${\;}_{n}^{2}$+n).
(1)求数列{an}的通项公式;
(2)设cn=$\left\{\begin{array}{l}{\frac{1}{{a}_{n+1}^{2}-1}}&{n为奇数}\\{3×{2}^{{a}_{n-1}}+1}&{n为偶数}\end{array}\right.$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=$\frac{2x}{lnx}$的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知tanα=2,则1+sin2α=$\frac{9}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+2ax+2,x∈[-5,5].
(I)当a=-1时,求函数f(x)的最大值和最小值;
(Ⅱ)记函数f(x)的最小值为g(a),求g(a)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.集合A={y|y=x2+2ax+1},B={y|y=-x2+1+a}.
(1)若A∪B=R,求实数a的取值范围;
(2)若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

同步练习册答案