精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆过点,且离心率为

(I)求椭圆的方程;

(Ⅱ)设直线与椭圆交于两点.若直线上存在点,使得四边形是平行四边形,求的值.

【答案】(1) (2) ,或

【解析】试题分析:(Ⅰ)由椭圆过点,可得,再由离心率为结合,可求得,从而可得椭圆的方程;(Ⅱ)设直线的方程为,则 ,由,由韦达定理、弦长公式结合,可得,解方程即可求得的值.

试题解析:由题意得 所以

因为

所以

所以 椭圆的方程为

若四边形是平行四边形,

,且 .

所以 直线的方程为

所以

,得

所以 .

因为 , 所以

整理得

解得 ,或

经检验均符合,但时不满足是平行四边形,舍去

所以 ,或

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求函数的单调区间;

(2)当时,设,若有两个相异零点,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1时,求上的单调区间;

2 均恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型娱乐场有两种型号的水上摩托,管理人员为了了解水上摩托的使用及给娱乐城带来的经济收入情况,对该场所最近6年水上摩托的使用情况进行了统计,得到相关数据如表:

(1)请根据以上数据,用最小二乘法求水上摩托使用率关于年份代码的线性回归方程,并预测该娱乐场2018年水上摩托的使用率;

(2)随着生活水平的提高,外出旅游的老百姓越来越多,该娱乐场根据自身的发展需要,准备重新购进一批水上摩托,其型号主要是目前使用的Ⅰ型、Ⅱ型两种,每辆价格分别为1万元、1.2万元.根据以往经验,每辆水上摩托的使用年限不超过四年.娱乐场管理部对已经淘汰的两款水上摩托的使用情况分别抽取了50辆进行统计,使用年限如条形图所示:

已知每辆水上摩托从购入到淘汰平均年收益是0.8万元,若用频率作为概率,以每辆水上摩托纯利润(纯利润=收益-购车成本)的期望值为参考值,则该娱乐场的负责人应该选购Ⅰ型水上摩托还是Ⅱ型水上摩托?

附:回归直线方程为,其中 .参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论错误的是(  )

A. 命题“若x2-3x-4=0,则x=4”的逆否命题是“若x≠4,则x2-3x-4≠0”

B. 命题“若m>0,则方程x2xm=0有实根”的逆命题为真命题

C. x=4”是“x2-3x-4=0”的充分条件

D. 命题“若m2n2=0,则m=0且n=0”的否命题是“若m2n2≠0,则m≠0或n≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex-ex(x∈R,且e为自然对数的底数).

(1)判断函数f(x)的单调性与奇偶性;

(2)是否存在实数t,使不等式f(xt)+f(x2t2)≥0对一切x∈R都成立?若存在,求出t;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知曲线曲线的左右焦点是 就是的焦点的在第一象限内的公共点且的直线分别与曲线交于点

(Ⅰ)求点的坐标及的方程

(Ⅱ)若面积分别是的取值范围

查看答案和解析>>

同步练习册答案