精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线的中心在原点,焦点F1F2在坐标轴上,离心率为,且过点.点M(3m)在双曲线上.

(1)求双曲线的方程;

(2)求证:

(3)F1MF2的面积.

【答案】(1)(2)证明见解析;(3)6

【解析】

(1)根据设双曲线的方程为,由点在双曲线上,代入,即可得到双曲线的方程;

(2)根据题意求出,根据向量数量积的坐标运算得到以及由点M在双曲线上得到,即可证明

(3)为底,以点M的纵坐标为高,即可得到F1MF2的面积.

(1)因为,所以双曲线的实轴、虚轴相等.则可设双曲线方程为.因为双曲线过点,所以1610λ,即λ6.所以双曲线方程为.

(2)证明:不妨设F1F2分别为左、右焦点,则 所以,因为M点在双曲线上,所以9m26,即m230,所以.

(3)的底.(2).所以的高,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为实数)的图像在点处的切线方程为.

(1)求实数的值及函数的单调区间;

(2)设函数,证明时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量按照空气质量指数大小分为七档(五级),相对应空气质量的七个类别,指数越大,说明污染的情况越严重,对人体危害越大.

指数

级别

类别

户外活动建议

可正常活动

轻微污染

易感人群症状有轻度加剧,健康人群出现刺激症状,心脏病和呼吸系统疾病患者应减少体积消耗和户外活动.

轻度污染

中度污染

心脏病和肺病患者症状显著加剧,运动耐受力降低,健康人群中普遍出现症状,老年人和心脏病、肺病患者应减少体力活动.

中度重污染

重污染

健康人运动耐受力降低,由明显强烈症状,提前出现某些疾病,老年人和病人应当留在室内,避免体力消耗,一般人群应尽量减少户外活动.

现统计包头市市区201610月至11月连续60天的空气质量指数,制成如图所示的频率分布直方图.

(Ⅰ)求这60天中属轻度污染的天数;

(Ⅱ)将频率分布直方图中的五组从左到右依次命名为第一组,第二组,,第五组.从第一组和第五组中的所有天数中抽出两天,记它们的空气质量指数分别为,求事件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,命题p:函数内单调递增;q:函数仅在处有极值.

1)若命题q是真命题,求a的取值范围;

2)若命题是真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,若点A为函数上的任意一点,点B为函数上的任意一点.

(1)求AB两点之间距离的最小值;

(2)若AB为函数与函数公切线的两个切点,求证:这样的点B有且仅有两个,且满足条件的两个点B的横坐标互为倒数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】画糖是一种以糖为材料在石板上进行造型的民间艺术,常见于公园与旅游景点.某师傅制作了一种新造型糖画,为了进行合理定价先进性试销售,其单价(元)与销量(个)相关数据如下表:

(1)已知销量与单价具有线性相关关系,求关于的线性相关方程;

(2)若该新造型糖画每个的成本为元,要使得进入售卖时利润最大,请利用所求的线性相关关系确定单价应该定为多少元?(结果保留到整数)

参考公式:线性回归方程中斜率和截距最小二乘法估计计算公式:

.参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:极坐标与参数方程]

在直角坐标系中,曲线的参数方程为是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程和曲线的直角坐标方程;

(2)若射线 与曲线交于两点,与曲线交于两点,求取最大值时的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中的零点:且恒成立,在区间上有最小值无最大值,则的最大值是(

A. 11B. 13C. 15D. 17

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求的普通方程和的直角坐标方程;

(Ⅱ)若交于两点,求的值.

查看答案和解析>>

同步练习册答案