精英家教网 > 高中数学 > 题目详情
19.定义在R上的函数f(x)的图象关于点(-$\frac{3}{4}$,0)成中心对称,对任意实数x都有f(x)=-f(x+$\frac{3}{2}$),且f(-1)=1,f(0)=-2,则f(1)+f(2)+…+f(2016)的值为0.

分析 由已知中定义在R上的函数f(x)的图象关于点(-$\frac{3}{4}$,0)成中心对称,对任意实数x都有f(x)=-f(x+$\frac{3}{2}$),我们易判断出函数f(x)是周期为3的周期函数,进而由f(-1)=1,f(0)=-2,我们求出一个周期内函数的值,进而利用分组求和法,得到答案.

解答 解:∵f(x)=-f(x+$\frac{3}{2}$),
∴f(x+$\frac{3}{2}$)=-f(x),
则f(x+3)=-f(x+$\frac{3}{2}$)=f(x)
所以,f(x)是周期为3的周期函数.
则f(2)=f(-1+3)=f(-1)=1,
f($\frac{1}{2}$)=-f(-1)=-1
∵函数f(x)的图象关于点(-$\frac{3}{4}$,0)成中心对称,
∴f(1)=-f(-$\frac{5}{2}$)=-f($\frac{1}{2}$)=1
∵f(0)=-2
∴f(1)+f(2)+f(3)=1+1-2=0
∴f(1)+f(2)+…+f(2016)=672[f(1)+f(2)+f(3)]=0
故答案为:0

点评 本题考查的知识点是函数的周期性,其中根据已知中对任意实数x都有f(x)=-f(x+$\frac{3}{2}$),判断出函数的周期性,是解答本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x2-2)的定义域是[1,+∞),求函数f($\frac{x}{2}$)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,已知b=$\sqrt{3}$,c=3,B=30°,则a=$\sqrt{3}$或2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知区间[-a,2a+1),则实数的a的取值范围是(  )
A.RB.[-$\frac{1}{3}$,+∞)C.(-$\frac{1}{3}$,+∞)D.(-∞,-$\frac{1}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设lga+lgb=2lg(a-2b),求log4$\frac{a}{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.解方程:10x=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=x2+|2x+4|的减区间是(-∞,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知幂函数f(x)=x${\;}^{{m}^{2}-m-2}$(m∈Z)是偶函数,且在区间(0,+∞)上是减函数.
(1)求f(x)的解析式;
(2)讨论φ(x)=a$\sqrt{f(x)}$-$\frac{b}{xf(x)}$的奇偶性(a,b∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.解不等式
(1)2x2+3x-2>0 
(2)2x2+x+2>0
(3)5-x2>4x.

查看答案和解析>>

同步练习册答案