【题目】若冬季昼夜温差x(单位:)与某新品种反季节大豆的发芽数量y(单位:颗)具有线性相关关系,根据一组样本数据,用最小二乘法近似得到回归直线方程为,则下列结论中不正确的是( )
A.y与x具有正相关关系
B.回归直线过点
C.若冬季昼夜温差增加,则该新品种反季节大豆的发芽数约增加2.5颗
D.若冬季昼夜温差的大小为,则该新品种反季节大豆的发芽数一定是22颗
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax+lnx(a∈R),g(x)=x2emx(m∈R,e为自然对数的底数).
(1)讨论函数f(x)的单调性及最值;
(2)若a>0,且对x1,x2∈[0,2],f(x1+1)≥g(x2)+a﹣1恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据,如表所示:
试销单价(元) | 4 | 5 | 6 | 7 | 8 | 9 |
产品销量(件) | q | 84 | 83 | 80 | 75 | 68 |
已知,.
(Ⅰ)求出的值;
(Ⅱ)已知变量,具有线性相关关系,求产品销量(件)关于试销单价(元)的线性回归方程;
(Ⅲ)用表示用(Ⅱ)中所求的线性回归方程得到的与对应的产品销量的估计值.当销售数据对应的残差的绝对值时,则将销售数据称为一个“好数据”.现从6个销售数据中任取2个,求“好数据”至少有一个的概率.
(参考公式:线性回归方程中,的最小二乘估计分别为,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的一个焦点为,离心率为.为椭圆的左顶点,为椭圆上异于的两个动点,直线与直线分别交于两点.
(I)求椭圆的方程;
(II)若与的面积之比为,求的坐标;
(III)设直线与轴交于点,若三点共线,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在全国第五个“扶贫日”到来之前,某省开展“精准扶贫,携手同行”的主题活动,某贫困县调查基层干部走访贫困户数量.甲镇有基层干部60人,乙镇有基层干部60人,丙镇有基层干部80人,每人都走访了若干贫困户,按照分层抽样,从甲、乙、丙三镇共选20名基层干部,统计他们走访贫困户的数量,并将走访数量分成,,,,5组,绘制成如图所示的频率分布直方图.
(1)求这20人中有多少人来自丙镇,并估计甲、乙、丙三镇的基层干部走访贫困户户数的中位数(精确到整数位);
(2)如果把走访贫困户达到或超过35户视为工作出色,求选出的20名基层干部中工作出色的人数,并从中选2人做交流发言,求这2人中至少有一人走访的贫困户在的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知点O(0,0),M(-4,0),N(4,0),P(0,-2),Q(0,2),H(4,2).线段OM上的动点A满足;线段HN上的动点B满足.直线PA与直线QB交于点L,设直线PA的斜率记为k,直线QB的斜率记为k',则kk'的值为______;当λ变化时,动点L一定在______(填“圆、椭圆、双曲线、抛物线”之中的一个)上.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com