精英家教网 > 高中数学 > 题目详情

【题目】若冬季昼夜温差x(单位:)与某新品种反季节大豆的发芽数量y(单位:颗)具有线性相关关系,根据一组样本数据,用最小二乘法近似得到回归直线方程为,则下列结论中不正确的是(

A.yx具有正相关关系

B.回归直线过点

C.若冬季昼夜温差增加,则该新品种反季节大豆的发芽数约增加2.5

D.若冬季昼夜温差的大小为,则该新品种反季节大豆的发芽数一定是22

【答案】D

【解析】

根据线性回归方程的相关计算,结合题意,进行逐一分析即可.

因为回归直线的斜率为2.5,所以yx具有正相关关系,A正确;

回归直线经过样本中心点,故过点B正确;

冬季昼夜温差增加,则发芽数量的增加量即为回归直线方程的斜率,

则该新品种反季节大豆的发芽数约增加2.5颗,C正确;

回归直线方程只可预测,不是确定的值,故D错误.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)时,,求的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+lnx(a∈R),g(x)=x2emx(m∈R,e为自然对数的底数).

(1)讨论函数f(x)的单调性及最值;

(2)若a>0,且对x1,x2∈[0,2],f(x1+1)≥g(x2)+a﹣1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据,如表所示:

试销单价(元)

4

5

6

7

8

9

产品销量(件)

q

84

83

80

75

68

已知.

(Ⅰ)求出的值;

(Ⅱ)已知变量具有线性相关关系,求产品销量(件)关于试销单价(元)的线性回归方程

(Ⅲ)用表示用(Ⅱ)中所求的线性回归方程得到的与对应的产品销量的估计值.当销售数据对应的残差的绝对值时,则将销售数据称为一个“好数据”.现从6个销售数据中任取2个,求“好数据”至少有一个的概率.

(参考公式:线性回归方程中的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点为,离心率为.为椭圆的左顶点,为椭圆上异于的两个动点,直线与直线分别交于两点.

(I)求椭圆的方程;

(II)若的面积之比为,求的坐标;

(III)设直线轴交于点,若三点共线,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数,且.

1)求的解析式,并判断零点的个数;

2)若,且对任意的恒成立,求k的最大值.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在全国第五个扶贫日到来之前,某省开展精准扶贫,携手同行的主题活动,某贫困县调查基层干部走访贫困户数量.甲镇有基层干部60人,乙镇有基层干部60人,丙镇有基层干部80人,每人都走访了若干贫困户,按照分层抽样,从甲、乙、丙三镇共选20名基层干部,统计他们走访贫困户的数量,并将走访数量分成5组,绘制成如图所示的频率分布直方图.

1)求这20人中有多少人来自丙镇,并估计甲、乙、丙三镇的基层干部走访贫困户户数的中位数(精确到整数位);

2)如果把走访贫困户达到或超过35户视为工作出色,求选出的20名基层干部中工作出色的人数,并从中选2人做交流发言,求这2人中至少有一人走访的贫困户在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知点O(0,0),M(-4,0),N(4,0),P(0,-2),Q(0,2),H(4,2).线段OM上的动点A满足;线段HN上的动点B满足.直线PA与直线QB交于点L,设直线PA的斜率记为k,直线QB的斜率记为k',则kk'的值为______;当λ变化时,动点L一定在______(填“圆、椭圆、双曲线、抛物线”之中的一个)上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,为棱的中点,.

(1)证明:平面

(2)设二面角的正切值为,求异面直线所成角的余弦值.

查看答案和解析>>

同步练习册答案