精英家教网 > 高中数学 > 题目详情
20.已知数列{an}是等差数列,公差d不为零,且a3+a9=a10-a8,则a5=0.

分析 由已知条件利用等差数列通项公式得到a1=-4d,由此能求出a5的值.

解答 解:∵数列{an}是等差数列,公差d不为零,且a3+a9=a10-a8
∴a1+2d+a1+8d=a1+9d-a1-7d,
解得a1=-4d,
∵d≠0,
∴a5=a1+4d=-4d+4d=0.
故答案为:0.

点评 本题考查等差数列的第5项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知a>0,b>0满足a+b=1,则$\frac{1}{a}+\frac{9}{b}$的最小值为(  )
A.12B.16C.20D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知方程log${\;}_{2}^{2}$x-2log2x+3-a=0在[1,8]上有且只有一解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若f(x)=x2+2(a-1)x+2在区间(4,+∞)上是增函数,那么实数a的取值范围是(  )
A.a≥3B.a≥-3C.a≤-3D.a≤5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设$a={(\frac{1}{3})}^{\frac{1}{2}}$,b=${2}^{-\frac{1}{2}}$,c=lnπ,则a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}各项均为正数,其前n项和为Sn,且a1=1,anan+1=2Sn.(n∈N*
(1)求数列{an}的通项公式;
(2)求数列{$n•{2}^{{a}_{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,AA1是平行四边形ABCD所在平面的一条斜线段,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,$\overrightarrow{A{A}_{1}}$=$\overrightarrow{c}$,且4$\overrightarrow{CR}$=$\overrightarrow{R{A}_{1}}$,则$\overrightarrow{AR}$等于(  )
A.$\frac{4}{5}$$\overrightarrow{a}$+$\frac{4}{5}$$\overrightarrow{b}$+$\frac{1}{5}$$\overrightarrow{c}$B.$\frac{1}{5}$$\overrightarrow{a}$+$\frac{1}{5}$$\overrightarrow{b}$+$\frac{4}{5}$$\overrightarrow{c}$C.$\frac{2}{5}$$\overrightarrow{a}$+$\frac{1}{5}$$\overrightarrow{b}$+$\frac{1}{5}$$\overrightarrow{c}$D.$\frac{1}{5}$$\overrightarrow{a}$+$\frac{1}{5}$$\overrightarrow{b}$+$\frac{3}{5}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求函数f(x)=$\frac{1{0}^{x}-1{0}^{-x}}{1{0}^{x}+1{0}^{-x}}$的奇偶性、值域、单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知斜率为-1的直线l与圆C:x2+y2=4交于M,N不同的两点,
(1)求直线l在x轴上的截距的取值范围:
(2)若弦MN的中点为P,点P的轨迹方程为C′,将圆C:x2+y2=4先向上平移1个单位长度,再向右平移1个单位长度,得到圆C″,求C′在C″内的长度.

查看答案和解析>>

同步练习册答案