精英家教网 > 高中数学 > 题目详情

若函数上为增函数(为常数),则称为区间上的“一阶比增函数”,的一阶比增区间.
(1) 若上的“一阶比增函数”,求实数的取值范围;
(2) 若  (为常数),且有唯一的零点,求的“一阶比增区间”;
(3)若上的“一阶比增函数”,求证:

(1)  (2)

解析试题分析:
(1)根据新定义可得在区间上单调递增,即导函数在区间上恒成立,则有,再利用分离参数法即可求的a的取值范围.
(2)对求导数,求单调区间,可以得到函数有最小值,又根据函数 只有一个零点,从而得到,解出的值为1,再根据的“一阶比增区间”的定义,则的单调增区间即为的“一阶比增区间”.
(3)根据上的“一阶比增函数”的定义,可得到函数在区间上单调递增,则由函数单调递增的定义可得到,同理有,两不等式化解相加整理即可得到.
试题解析:
(1)由题得, 在区间上为增函数,则在区间上恒成立,即,综上a的取值范围为.
(2)由题得,(),则,当时,因为,所以, .因为,所以函数 在区间上单调递减,在区间上单调递增,即 .又因为有唯一的零点,所以(使解得带入验证),故 的单调增区间为.即的“一阶比增区间”为.
(3)由题得,因为函数 为上的“一阶比增函数”,所以在区间上的增函数,又因为,所以
……1,同理, ……2,则1+2得
,所以.
考点:单调性定义 不等式 导数 新概念

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

求下列各函数的导数:
(1)y=(x+1)(x+2)(x+3).
(2)y=+.
(3)y=e-xsin2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x-aln x(a∈R).
(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)当时,求曲线在点处的切线方程;
(2)讨论的单调性;
(3)若有两个极值点,记过点的直线的斜率为,问是否存在,使得?若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在R上的函数同时满足以下条件:
在(0,1)上是减函数,在(1,+∞)上是增函数;
是偶函数;
在x=0处的切线与直线y=x+2垂直.
(1)求函数的解析式;
(2)设g(x)=,若存在实数x∈[1,e],使g(x)<,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax+ln x,其中a为常数,e为自然对数的底数.
(1)当a=-1时,求f(x)的最大值;
(2)当a=-1时,试推断方程|f(x)|=是否有实数解,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2-(1+2a)xaln x(a为常数).
(1)当a=-1时,求曲线yf(x)在x=1处切线的方程;
(2)当a>0时,讨论函数yf(x)在区间(0,1)上的单调性,并写出相应的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=(x+1)ln x-2x.
(1)求函数的单调区间;
(2)设h(x)=f′(x)+,若h(x)>k(k∈Z)恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求曲线yx3在点(3,27)处的切线与两坐标轴所围成的三角形的面积.

查看答案和解析>>

同步练习册答案