【题目】在直角坐标系xoy 中,直线l的参数方程为 ,(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点o为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=4cosθ. (Ⅰ)求圆C在直角坐标系中的方程;
(Ⅱ)若圆C与直线l相切,求实数a的值.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=4x﹣2x , 实数s,t满足f(s)+f(t)=0,a=2s+2t , b=2s+t .
(1)当函数f(x)的定义域为[﹣1,1]时,求f(x)的值域;
(2)求函数关系式b=g(a),并求函数g(a)的定义域D;
(3)在(2)的结论中,对任意x1∈D,都存在x2∈[﹣1,1],使得g(x1)=f(x2)+m成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱锥P﹣ABC中,PA=PC,底面ABC为正三角形.
(Ⅰ)证明:AC⊥PB;
(Ⅱ)若平面PAC⊥平面ABC,AC=PC=2,求二面角A﹣PC﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:
喜欢游泳 | 不喜欢游泳 | 合计 | |
男生 | 10 | ||
女生 | 20 | ||
合计 |
已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为 .
下面的临界值表仅供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式: ,其中n=a+b+c+d)
(1)请将上述列联表补充完整:并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;
(2)针对于问卷调查的100名学生,学校决定从喜欢游泳的人中按分层抽样的方法随机抽取6人成立游泳科普知识宣传组,并在这6人中任选2人作为宣传组的组长,设这两人中男生人数为X,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知bcosC=(2a﹣c)cosB. (Ⅰ)求B;
(Ⅱ)若c=2,b=3,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}中,an+2﹣2an+1+an=1(n∈N*),a1=1,a2=3..
(1)求证:{an+1﹣an}是等差数列;
(2)求数列{ }的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在一个边长为1的正方形AOBC内,曲线y=x3(x>0)和曲线y= 围成一个叶形图(阴影部分),向正方形AOBC内随机投一点(该点落在正方形AOBC内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=lg(x+m)(m∈R);
(1)当m=2时,解不等式 ;
(2)若f(0)=1,且 在闭区间[2,3]上有实数解,求实数λ的范围;
(3)如果函数f(x)的图像过点(98,2),且不等式f[cos(2nx)]<lg2对任意n∈N均成立,求实数x的取值集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 =(cosα,sinα), =(cosβ,sinβ),其中0<α<β<π.
(1)求证: 与 互相垂直;
(2)若k 与 ﹣k 的长度相等,求β﹣α的值(k为非零的常数).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com