精英家教网 > 高中数学 > 题目详情
已知定点N(3,0)与以点M为圆心的圆M的方程为(x+3)2+y2=16,动点P在圆M上运动,线段PN的垂直平分线交直线MP于Q点,则动点Q的轨迹方程是______.
连接QN,如图
由已知,得|QN|=|QP|,所以|QN|-|QM|=|QP|-|QM|=|MP|=4
又|MN|=6,4<6,
根据双曲线的定义,点Q的轨迹是M,N为焦点,以4为实轴长的双曲线,
所以2a=4,2c=6,所以b=
5

所以,点Q的轨迹方程为:
x2
4
-
y2
5
=1

故答案为:
x2
4
-
y2
5
=1

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

圆C1:(x-1)2+(y-2)2=1,圆C2:(x-2)2+(y-5)2=9,则这两圆公切线的条数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程x=
1-y2
表示的曲线是(  )
A.一条射线B.一个圆C.两条射线D.半个圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面上动点P到定点F(1,0)的距离比P到y轴的距离大1,则动点P的轨迹方程为(  )
A.y2=2xB.y2=4x
C.y2=2x或
y=0
x≤0
D.y2=4x或
y=0
x≤0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一条曲线在x轴的上方,它上面的每一点到点A(0,2)的距离减去它到x轴的距离的差都是2,求这条曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知半径为1的动圆与圆(x-5)2+(y+7)2=16外切,则动圆圆心的轨迹方程是(  )
A.(x-5)2+(y+7)2=15B.(x-5)2+(y+7)2=17
C.(x-5)2+(y+7)2=9D.(x-5)2+(y+7)2=25

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A(-1,0),B(2,0),动点M(x,y)满足
|MA|
|MB|
=
1
2
,设动点M的轨迹为C.
(1)求动点M的轨迹方程,并说明轨迹C是什么图形;
(2)求动点M与定点B连线的斜率的最小值;
(3)设直线l:y=x+m交轨迹C于P,Q两点,是否存在以线段PQ为直径的圆经过A?若存在,求出实数m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

长为2、4的线段在AB、CD分别在x轴、y轴上滑动,且A、B、C、D四点共圆,求此动圆圆心P的轨迹.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:已知线段AB=4,动圆O1与线段AB相切于点C,且AC-BC=2
2
,过点A,B分别作⊙O1的切线,两切线相交于点P,且P、O1均在AB的同侧.
(Ⅰ)建立适当坐标系,当O1位置变化时,求动点P的轨迹E方程;
(Ⅱ)过点B作直线交曲线E于点M、N,求△AMN面积的最小值.

查看答案和解析>>

同步练习册答案