5£®Ä¿Ç°ÎÒ¹úºÜ¶à³ÇÊгöÏÖÁËÎíö²ÌìÆø£¬ÒѾ­¸ø¹ã´óÈËÃñµÄ½¡¿µ´øÀ´Ó°Ï죬ÆäÖÐÆû³µÎ²ÆøÅÅ·ÅÊÇÔì³ÉÎíö²ÌìÆøµÄÖØÒªÒòËØÖ®Ò»£¬ºÜ¶à³ÇÊÐÌᳫÂÌÉ«³öÐз½Ê½£¬ÊµÊ©»ú¶¯³µÎ²ºÅÏÞÐУ®Ä³ÊÐΪÁ˽âÃñÖÚ¶Ô¡°³µÁ¾ÏÞÐС±µÄ̬¶È£¬Ëæ»úµ÷²éÁË50ÈË£¬²¢°ëµ÷²é½á¹ûÖƳÉÈç±í£º
ÄêÁ䣨Ë꣩[15£¬25£©[25£¬35£©[35£¬45£©[45£¬55£©[55£¬65£©[65£¬75£©
ƵÊý510151055
ÔÞ³ÉÈËÊý469634
£¨1£©Èô´ÓÄêÁäÔÚ[15£¬25£©¡¢[25£¬35£©µÄ±»µ÷²éÕßÖÐËæ»úÑ¡È¡2È˽øÐиú×Ùµ÷²é£¬¼ÇÑ¡ÖеÄ4ÈËÖв»Ô޳ɡ°³µÁ¾ÏÞÐС±µÄÈËÊý¼ÇΪX£¬ÇóXµÄ·Ö²¼ÁкÍÆÚÍû£»
£¨2£©°ÑÄêÁäÔÚ[15£¬45£©³ÆΪÖÐÇàÄ꣬ÄêÁäÔÚ[45£¬75£©³ÆΪÖÐÀÏÄ꣬Çë¸ù¾ÝÉϱíÍê³É2¡Á2ÁÐÁª±í£¬²¢ËµÃ÷ÃñÖÚ¶Ô¡°³µÁ¾ÏÞÐС±µÄ̬¶ÈÓëÄêÁäÊÇ·ñÓйØÁª£®
̬¶È
ÄêÁä
Ô޳ɲ»ÔÞ³É×ܼÆ
ÖÐÇàÄê
ÖÐÀÏÄê
×ܼÆ
²Î¿¼¹«Ê½ºÍÊý¾Ý£ºx2=$\frac{n£¨ad-bc£©^{2}}{£¨a+c£©£¨b+d£©£¨a+b£©£¨c+d£©}$
X2¡Ü2.706£¾2.706£¾3.841£¾6.635
A¡¢B¹ØÁªÐÔÎÞ¹ØÁª90%95%99%

·ÖÎö £¨1£©XµÄȡֵΪ0£¬1£¬2£¬3£¬Çó³öÏàÓ¦µÄ¸ÅÂÊ£¬¼´¿ÉÇóXµÄ·Ö²¼ÁкÍÆÚÍû£»
£¨2£©¸ù¾ÝËù¸ø×ö³öµÄÁÐÁª±í£¬×ö³ö¹Û²âÖµ£¬°Ñ¹Û²âֵͬÁÙ½çÖµ½øÐбȽϵõ½½áÂÛ£®

½â´ð ½â£º£¨1£©XµÄȡֵΪ0£¬1£¬2£¬3¡­£¨1·Ö£©
P£¨X=0£©=$\frac{{C}_{4}^{2}}{{C}_{5}^{2}}$•$\frac{{C}_{6}^{2}}{{C}_{10}^{2}}$=$\frac{90}{450}$£¬P£¨X=1£©=$\frac{{C}_{4}^{2}}{{C}_{5}^{2}}$•$\frac{{C}_{6}^{1}{C}_{4}^{1}}{{C}_{10}^{2}}$+$\frac{{C}_{4}^{1}}{{C}_{5}^{2}}$•$\frac{{C}_{6}^{2}}{{C}_{10}^{2}}$=$\frac{204}{450}$£¬
P£¨X=2£©=$\frac{{C}_{4}^{1}}{{C}_{5}^{2}}$•$\frac{{C}_{6}^{1}{C}_{4}^{1}}{{C}_{10}^{2}}$+$\frac{{C}_{4}^{2}}{{C}_{5}^{2}}$•$\frac{{C}_{4}^{2}}{{C}_{10}^{2}}$=$\frac{132}{450}$£¬P£¨X=3£©=$\frac{{C}_{4}^{1}}{{C}_{5}^{2}}$•$\frac{{C}_{4}^{2}}{{C}_{10}^{2}}$=$\frac{24}{450}$¡­£¨5·Ö£©
XµÄ·Ö²¼ÁÐΪ

X0123
P$\frac{90}{450}$$\frac{204}{450}$$\frac{132}{450}$$\frac{24}{450}$
EX=0¡Á$\frac{90}{450}$+1¡Á$\frac{204}{450}$+2¡Á$\frac{132}{450}$+3¡Á$\frac{24}{450}$=1.2¡­£¨6·Ö£©
£¨2£©2¡Á2ÁÐÁª±íÈçͼËùʾ¡­£¨9·Ö£©
̬¶È
ÄêÁä
Ô޳ɲ»ÔÞ³É×ܼÆ
ÖÐÇàÄê191130
ÖÐÀÏÄê13720
×ܼÆ321850
X2=$\frac{50¡Á£¨133-143£©^{2}}{32¡Á18¡Á30¡Á20}$¡Ö0.0145¡Ü2.706¡­£¨11·Ö£©
˵Ã÷ÃñÖÚ¶Ô¡°³µÁ¾ÏÞÐС±µÄ̬¶ÈÓëÄêÁäûÓйØÁª¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÇóXµÄ·Ö²¼ÁкÍÆÚÍû¡¢¶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦Ó㬱¾Ìâ½âÌâµÄ¹Ø¼üÊÇÕýÈ·ÔËËã³ö¹Û²âÖµ£¬Àí½âÁÙ½çÖµ¶ÔÓ¦µÄ¸ÅÂʵÄÒâÒ壬±¾ÌâÊÇÒ»¸öÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖª0£¼¦Á£¼$\frac{¦Ð}{2}$£¬$\frac{¦Ð}{2}$£¼¦Â£¼¦ÐÇÒtan$\frac{¦Á}{2}$=$\frac{1}{2}$£¬sin£¨¦Á+¦Â£©=$\frac{5}{13}$
£¨1£©·Ö±ðÇócos¦ÁÓëcos¦ÂµÄÖµ£»
£¨2£©Çótan£¨¦Á-¦Â£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Ô²ÐÄΪC£¨3£¬$\frac{¦Ð}{6}$£©£¬°ë¾¶Îª3µÄÔ²µÄ¼«×ø±ê·½³ÌΪ¦Ñ=6cos£¨¦È-$\frac{¦Ð}{6}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨$\frac{¦Ð}{4}$+¦È£©=2$\sqrt{2}$
£¨1£©½«ÇúÏßCÉϸ÷µãµÄ×Ý×ø±êÉ쳤ΪԭÀ´µÄÁ½±¶£¬µÃµ½ÇúÏßC1£¬Ð´³öÇúÏßC1µÄ¼«×ø±ê·½³Ì£®
£¨2£©ÉäÏߦÈ=$\frac{¦Ð}{6}$ÓëC1¡¢lµÄ½»µã·Ö±ðΪA¡¢B£¬ÉäÏߦÈ=-$\frac{¦Ð}{6}$ÓëC1¡¢lµÄ½»µã·Ö±ðΪA1¡¢B1£¬Çó¡÷OAA1Óë¡÷OBB1µÄÃæ»ýÖ®±È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®´Óij°à³ÉÔ±·Ö±ðΪ3ÈË¡¢3È˺Í4È˵ÄÈý¸öѧϰС×éÖÐÑ¡ÅÉ4ÈË×é³ÉÒ»¸ö»·±£Ðû´«Ð¡×飬Ôòÿ¸öѧϰС×鶼ÖÁÉÙÓÐ1È˵ÄÑ¡ÅÉ·½·¨ÖÖÊýÊÇ£¨¡¡¡¡£©
A£®130B£®128C£®126D£®124

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èý½ÇÐÎABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÇÒa2+b2-2a-4b+5=0£¬
£¨1£©ÈôC=$\frac{¦Ð}{3}$£¬ÇócµÄÖµ£»
£¨2£©ÈôsinA+sinB=$\frac{\sqrt{3}}{2}$£¬ÇósinCµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖª£¨x2+2x+1£©£¨1+x£©4=a0+a1x+a2x2+¡­+a7x7£¬Ôòa1+2a2+3a3+¡­+7a7=192£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®½«º¯Êýf£¨x£©=sin2x-$\sqrt{3}x$£¨x£¾0£©µÄËùÓм«´óÖµµã°´´ÓСµ½´ó˳ÐòÒÀ´ÎÅÅÁУ¬ÐγÉÊýÁÐ{xn}£¬¦Èn=x1+x2+¡­+xn£¬ÔòÏÂÁÐÃüÌâÕýÈ·µÄÊǢ٢ڢܢݣ¨Ð´³öÄãÈÏΪÕýÈ·µÄËùÓÐÃüÌâµÄÐòºÅ£©
¢Ùº¯Êýf£¨x£©=sin2x-$\sqrt{3}$xÔÚx=$\frac{¦Ð}{12}$´¦È¡µÃ¼«´óÖµ£»
¢Útanx${\;}_{n}=2-\sqrt{3}$£»
¢Ûsin¦Èn¡Üsin¦Èn+1¶ÔÓÚÈÎÒâÕýÕûÊýnºã³ÉÁ¢£»
¢Ü´æÔÚÕýÕûÊýT£¬Ê¹µÃ¶ÔÓÚÈÎÒâÕýÕûÊýn£¬¶¼ÓÐsin¦Èn=sin¦Èn+T=0³ÉÁ¢£»
¢ÝnÈ¡ËùÓеÄÕýÕûÊý£¬sin¦ÈnµÄ×î´óֵΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖª¡÷ABC¸÷½ÇµÄ¶ÔÓ¦±ß·Ö±ðΪa£¬b£¬c£¬ÇÒÂú×ã$\frac{b}{a+c}$+$\frac{c}{a+b}$¡Ý1£¬Ôò½ÇAµÄÈ¡Öµ·¶Î§ÊÇ£¨0£¬$\frac{¦Ð}{3}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸