18£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¨-3£¬0£©¡¢F2£¨3£¬0£©£¬Ö±Ïßy=kxÓëÍÖÔ²½»ÓÚA¡¢BÁ½µã£®
£¨1£©ÈôÈý½ÇÐÎAF1F2µÄÖܳ¤Îª$4\sqrt{3}+6$£¬ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©Èô$2\sqrt{3}£¼a£¼3\sqrt{2}$£¬ÇÒÒÔABΪֱ¾¶µÄÔ²¹ýÍÖÔ²µÄÓÒ½¹µã£¬ÇóÖ±Ïßy=kxбÂÊkµÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨1£©ÓÉÌâÒâµÃ$\left\{\begin{array}{l}{c=3}\\{2a+2c=4\sqrt{3}+6}\end{array}\right.$£¬Çó³öa¡¢cµÄÖµ£¬½áºÏÒþº¬Ìõ¼þÇóµÃb£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨2£©ÁªÁ¢$\left\{\begin{array}{l}{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\\{y=kx}\end{array}\right.$£¬»¯Îª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÀûÓøùÓëϵÊýµÄ¹ØϵµÃµ½A£¬BÁ½µãºá×ø±êµÄºÍÓë»ý£¬ÒÀÌâÒ⣬AF2¡ÍBF2£¬ÀûÓÃÏòÁ¿ÊýÁ¿»ýΪ0µÃµ½¹ØÓÚa£¬kµÄ¹Øϵʽ£¬ÔÚ½áºÏaµÄ·¶Î§µÃ´ð°¸£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃ$\left\{\begin{array}{l}{c=3}\\{2a+2c=4\sqrt{3}+6}\end{array}\right.$£¬µÃa=2$\sqrt{3}$£¬c=3£®
½áºÏa2=b2+c2£¬½âµÃa2=12£¬b2=3£®
ÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{3}=1$£»
£¨2£©ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\\{y=kx}\end{array}\right.$£¬µÃ£¨b2+a2k2£©x2-a2b2=0£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®
¡à${x}_{1}+{x}_{2}=0£¬{x}_{1}{x}_{2}=-\frac{{a}^{2}{b}^{2}}{{b}^{2}+{a}^{2}{k}^{2}}$£¬
ÒÀÌâÒ⣬AF2¡ÍBF2£¬
¡ß$\overrightarrow{{F}_{2}A}=£¨{x}_{1}-3£¬{y}_{1}£©$£¬$\overrightarrow{{F}_{2}B}=£¨{x}_{2}-3£¬{y}_{2}£©$£¬
¡à$\overrightarrow{{F}_{2}A}•\overrightarrow{{F}_{2}B}$=$£¨{x}_{1}-3£©£¨{x}_{2}-3£©+{y}_{1}{y}_{2}=£¨1+{k}^{2}£©{x}_{1}{x}_{2}+9$=0£®
¼´$\frac{-{a}^{2}£¨{a}^{2}-9£©£¨1+{k}^{2}£©}{{a}^{2}{k}^{2}+£¨{a}^{2}-9£©}+9=0$£¬
½«ÆäÕûÀíΪ${k}^{2}=\frac{{a}^{4}-18{a}^{2}+8{1}^{2}}{-{a}^{4}+18{a}^{2}}=-1-\frac{81}{{a}^{4}-18{a}^{2}}$£®
¡ß$2\sqrt{3}£¼a£¼3\sqrt{2}$£¬¡à12¡Üa2£¼18£®
¡à${k}^{2}¡Ý\frac{1}{8}$£¬¼´k¡Ê$£¨-¡Þ£¬-\frac{{\sqrt{2}}}{4}£©¡È£¨\frac{{\sqrt{2}}}{4}£¬+¡Þ£©$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨺ÍÖ±ÏßÓëÍÖԲλÖùØϵµÄ×ÛºÏÔËÓ㬽âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÚ¾òÌâÉèÖеÄÒþº¬Ìõ¼þ£¬ºÏÀíµØ½øÐеȼÛת»¯£¬ÊÇѹÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÏÂÁи÷×麯ÊýΪͬһº¯ÊýµÄÊÇ£¨¡¡¡¡£©
A£®f£¨x£©=x£¬g£¨x£©=£¨$\sqrt{x}$£©2B£®f£¨x£©=$\sqrt{x}$•$\sqrt{x+1}$£¬g£¨x£©=$\sqrt{{x}^{2}+x}$
C£®f£¨x£©=1£¬g£¨x£©=x0D£®f£¨x£©=|x|£¬g£¨x£©=$\left\{\begin{array}{l}{x£¬x£¾0}\\{-x£¬x¡Ü0}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®º¯Êýy=loga£¨3x-5£©+4£¨a£¾0ÇÒa¡Ù1£©µÄͼÏóºã¹ý¶¨µãA£¬ÇÒµãAÔÚÃݺ¯Êýf£¨x£©µÄͼÏóÉÏ£¬Ôòf£¨3£©=9£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Ä³ÉçÍÅ×éÖ¯50ÃûÖ¾Ô¸Õ߲μÓÉç»á¹«Òæ»î¶¯£¬°ïÖúÄÇЩÐèÒª°ïÖúµÄÈË£¬¸÷λ־ԸÕ߸ù¾Ý¸÷×ÔµÄʵ¼ÊÇé¿ö£¬Ñ¡ÔñÁËÁ½¸ö²»Í¬µÄ»î¶¯ÏîÄ¿£¬Ïà¹ØµÄÊý¾ÝÈçϱíËùʾ£º
Ðû´«Î¿ÎÊÒ幤×ܼÆ
ÄÐÐÔÖ¾Ô¸Õß111627
Å®ÐÔÖ¾Ô¸Õß15823
×ܼÆ262450
£¨1£©ÏÈÓ÷ֲã³éÑùµÄ·½·¨ÔÚ×öÒ幤µÄÖ¾Ô¸ÕßÖÐËæ»ú³éÈ¡6ÃûÖ¾Ô¸Õߣ¬ÔÙ´ÓÕâ6ÃûÖ¾Ô¸ÕßÖÐÓÖËæ»ú³éÈ¡2ÃûÖ¾Ô¸Õߣ¬Éè³éÈ¡µÄ2ÃûÖ¾Ô¸ÕßÖÐÅ®ÐÔÈËÊýΪ¦Î£¬Çó¦ÎµÄÊýѧÆÚÍû£®
£¨2£©Èç¹û¡°Ðû´«Î¿ÎÊ¡±Óë¡°×öÒ幤¡±ÊÇÁ½¸ö·ÖÀà±äÁ¿£¬ÄÇôÄãÓжà´ó°ÑÎÕÈÏΪѡÔñ×öÐû´«Î¿ÎÊÓë×öÒ幤ÊÇÓëÐÔ±ðÓйØϵµÄ£¿
¸½£º2¡Á2ÁÐÁª±íËæ»ú±äÁ¿K2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£®P£¨K2¡Ýk£©Óëk¶ÔÓ¦Öµ±í£º
²Î¿¼Êý¾ÝP£¨K2¡Ýk£©0.150.100.050.0250.0100.005
k2.0722.7063.8415.0246.6357.879

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®º¯Êýf£¨x£©=loga|x|ÔÚ£¨-¡Þ£¬0£©Éϵ¥µ÷µÝÔö£¬Ôòf£¨-3£©Óëf£¨2£©µÄ´óС¹ØϵÊÇ£¨¡¡¡¡£©
A£®f£¨-3£©=f£¨2£©B£®f£¨-3£©£¾f£¨2£©C£®f£¨-3£©£¼f£¨2£©D£®²»ÄÜÈ·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÊýÁÐ{an}Êǹ«²î²»Îª0µÄµÈ²îÊýÁУ¬{bn}ÊǵȱÈÊýÁУ¬ÇÒb1=a1=3£¬b2=a3£¬b3=a9£®
£¨¢ñ£©ÇóÊýÁÐ{an}ºÍ{bn}µÄͨÏʽ£»
£¨¢ò£©Éè${c_n}={log_3}b_n^5-32$£¬ÇóÊýÁÐ{|cn|}µÄÇ°nÏîµÄºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Èôf£¨x£©=x2+kx+1£¬an=f£¨n£©£¬n¡ÊN*£¬ÒÑÖªÊýÁÐ{an}ÊǵÝÔöÊýÁУ¬ÔòkµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[0£¬+¡Þ£©B£®£¨-1£¬+¡Þ£©C£®[-2£¬+¡Þ£©D£®£¨-3£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÊµÊýx£¬yÂú×ã$\left\{\begin{array}{l}x-y+1¡Ü0\\ x£¾0\\ y¡Ü2\end{array}\right.$£¬Ôò$z=\frac{y}{x-4}$µÄ×îСֵΪ$-\frac{2}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªµÈ±ÈÊýÁÐ{an}Âú×ãa1=2£¬16a3a5=8a4-1£¬Ôòa2=£¨¡¡¡¡£©
A£®2B£®1C£®$\frac{1}{2}$D£®$\frac{1}{8}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸