精英家教网 > 高中数学 > 题目详情
2.如图水平放置的一个平面图形的直观图是边长为1cm的正方形,则原图形的周长是(  )
A.8cmB.6cmC.$2(1+\sqrt{3})cm$D.$2(1+\sqrt{2})cm$

分析 由斜二测画法的规则知在已知图形平行于x轴的线段,在直观图中画成平行于x′轴,长度保持不变,已知图形平行于y轴的线段,在直观图中画成平行于y′轴,且长度为原来一半.由于y′轴上的线段长度为$\sqrt{2}$cm,故在平面图中,其长度为2$\sqrt{2}$cm,且其在平面图中的y轴上,由此可以求得原图形的周长.

解答 解:由斜二测画法的规则知与x′轴平行的线段其长度不变以及与横轴平行的性质不变,
正方形的对角线在y′轴上,
可求得其长度为$\sqrt{2}$cm,故在平面图中其在y轴上,且其长度变为原来的2倍,长度为2$\sqrt{2}$cm,其原来的图形如图所示,
则原图形的周长是:8cm
故选A.

点评 本题考查的知识点是平面图形的直观图,其中斜二测画法的规则,能够快速的在直观图面积和原图面积之间进行转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.在数字1、2、3、4中随机选两个数字,则选中的数字中至少有一个是偶数的概率为$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\vec a,\vec b$满足$|\vec a|=2$,$|\vec b|=\sqrt{3}$,且$\vec a$与$\vec b$夹角为30°,那么$\vec a•\vec b$等于(  )
A.1B.$\sqrt{3}$C.3D.$3\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC⊥CB,点M和N分别是B1C1和BC的中点.
(1)求证:MB∥平面AC1N;
(2)求证:AC⊥MB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.四面体ABCD中,已知AB=AC=BC=BD=CD=1,则该四面体体积的最大值是$\frac{1}{8}$,表面积的最大值是$\frac{\sqrt{3}}{2}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知圆C:x2+y2-2x+4y=0,则圆C的半径为$\sqrt{5}$,过点(2,1)的直线中,被圆C截得弦长最长的直线方程为3x-y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设等差数列{an}的公差是d,前n项和是Sn,若a1=1,a5=9,则公差d=2,Sn=n2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知曲线C的参数方程是$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(α为参数)
(1)将C的参数方程化为普通方程;
(2)在直角坐标系xOy中,P(0,2),以原点O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为ρcosθ+$\sqrt{3}$ρsinθ+2$\sqrt{3}$=0,Q为C上的动点,求线段PQ的中点M到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知点$M(2,2\sqrt{6})$,点F为抛物线y2=2px(p>0)的焦点,点P是该抛物线上的一个动点.若|PF|+|PM|的最小值为5,则p的值为2或6.

查看答案和解析>>

同步练习册答案