【题目】如图,在四棱锥中,底面是正方形,侧棱底面,是的中点,求证:
(1)平面 ;
(2).
科目:高中数学 来源: 题型:
【题目】如图,在长方体中,点是棱的中点,点 在棱上,且(为实数).
(1)求二面角的余弦值;
(2)当时,求直线与平面所成角的正弦值的大小;
(3)求证:直线与直线不可能垂直.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一支车队有辆车,某天依次出发执行运输任务。第一辆车于下午时出发,第二辆车于下午时分出发,第三辆车于下午时分出发,以此类推。假设所有的司机都连续开车,并都在下午时停下来休息.
到下午时,最后一辆车行驶了多长时间?
如果每辆车的行驶速度都是,这个车队当天一共行驶了多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线 与双曲线 的离心率相同,且双曲线C2的左、右焦点分别为F1 , F2 , M是双曲线C2一条渐近线上的某一点,且OM⊥MF2 , ,则双曲线C2的实轴长为( )
A.4
B.
C.8
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一个港口,相邻两次高潮发生时间相距,低潮时水的深度为,高潮时为,一次高潮发生在10月10日4:00,每天涨潮落潮时,水的深度与时间近似满足关系式.
(1)若从10月10日0:00开始计算时间,选用一个三角函数来近似描述该港口的水深和时间之间的函数关系.
(2)10月10日17:00该港口水深约为多少?(精确到)
(3)10月10日这一天该港口共有多长时间水深低于?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数),且直线与曲线交于两点,以直角坐标系的原点为极点,以轴的正半轴为极轴建立极坐标系.
(1)求曲线的极坐标方程;
(2) 已知点的极坐标为,求的值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com