精英家教网 > 高中数学 > 题目详情

经调查统计,某种型号的汽车在匀速行驶中,每小时的耗油量(升)关于行驶速度(千米/时)的函数可表示为.已知甲、乙两地相距千米,在匀速行驶速度不超过千米/时的条件下,该种型号的汽车从甲地 到乙地的耗油量记为(升).
(Ⅰ)求函数的解析式;
(Ⅱ)讨论函数的单调性,当为多少时,耗油量为最少?最少为多少升?

(Ⅰ);(Ⅱ)当,从甲地到乙地的耗油量最少,最少耗油量为7升.

解析试题分析:(Ⅰ)由题意得,汽车从甲地到乙地行驶了小时,又因为每小时的耗油量(升)关于行驶速度(千米/时)的函数可表示为,二者相乘即得.(Ⅱ)由(Ⅰ)有,,利用导数可得其最小值.
试题解析:(Ⅰ)由题意得,汽车从甲地到乙地行驶了小时,            (2分)

.                  (5分)
(Ⅱ)由(Ⅰ)有,.          (8分)
,得.               (9分)
①当时,是减函数;             (10分)
②当时,是增函数;           (11分)
,即汽车的行驶速度为(千米/时)时,从甲地到乙地的耗油量为最少,最少耗油量为(升).                                 (12分)
考点:函数及导数的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若曲线经过点,曲线在点处的切线与直线垂直,求的值;
(2)在(1)的条件下,试求函数为实常数,)的极大值与极小值之差;
(3)若在区间内存在两个不同的极值点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x∈(1,+∞).
(1)求函数f(x)的单调区间;
(2)函数f(x)在区间[2,+∞)上是否存在最小值,若存在,求出最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)当时,求的单调区间;
(Ⅱ)若当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)当时,求函数处的切线方程;
(2)若函数在区间(1,2)上不是单调函数,试求的取值范围;
(3)已知,如果存在,使得函数处取得最小值,试求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,的图象在点处的切线平行于直线,求的值;
(2)当时,在点处有极值,为坐标原点,若三点共线,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若上是增函数,求实数a的取值范围;
(Ⅱ)证明:当a≥1时,证明不等式≤x+1对x∈R恒成立;
(Ⅲ)对于在(0,1)中的任一个常数a,试探究是否存在x0>0,使得>x0+1成立?如果存在,请求出符合条件的一个x0;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中是自然对数的底数,.
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,试确定函数的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)证明:
(2)当时,,求的取值范围.

查看答案和解析>>

同步练习册答案