精英家教网 > 高中数学 > 题目详情

【题目】下列命题中,正确的序号是_____

①直线上有两个点到平面的距离相等,则这条直线和这个平面平行;

②过球面上任意两点的大圆有且只有一个;

③直四棱柱是直平行六面体;

为异面直线,则过且与平行的平面有且仅有一个;

⑤两相邻侧面所成角相等的棱锥是正棱锥.

【答案】

【解析】

①中直线可能与平面相交,①错误;②中若两点与圆心共线,为球的直径,大圆不唯一,②错误;由直四棱柱和直平行六面体定义可知③错误;④中,首先验证存在性,再利用反证法证明唯一性,可知④正确;⑤中通过正方形折叠可得满足题意的棱锥,但不符合正棱锥定义,知⑤错误.

①中,直线上两点若分居平面两侧,也可满足到平面距离相等,此时直线和平面相交,故①错误;

②若球面上两点构成球的直径,此时过两点的大圆不唯一,故②错误;

③若直四棱柱底面不是平行四边形,例如是梯形时,则其不是平行六面体,故③错误;

④过上一点作直线,则确定平面

假设存在平面,则 与已知矛盾

满足题意的平面有且仅有一个,④正确;

⑤把如下图所示的正方形折叠成三棱锥,满足侧面所成角相等,此时不是正三棱锥

故⑤错误.

综上所述:正确命题的序号为④

故答案为:④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线过点,过点作直线与抛物线交于不同两点,过轴的垂线分别与直线交于点,其中为坐标原点.

1)求抛物线的方程;

2)写出抛物线的焦点坐标和准线方程;

3)求证:为线段的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若在区间上不是单调函数,求实数的范围;

(2)若对任意,都有恒成立,求实数的取值范围;

(3)当时,设,对任意给定的正实数,曲线上是否存在两点,使得是以为坐标原点)为直角顶点的直角三角形,而且此三角形斜边中点在轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数a为实数

求函数的单调区间;

若存在实数a,使得对任意恒成立,求实数m的取值范围.提示:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“是作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“两项作品未获得一等奖”;

丁说:“是作品获得一等奖”.

若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数满足,若恒成立,则实数的取值范围为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示:在五面体ABCDEF中,四边形EDCF是正方形,AD=DE=1,∠ADE=90°,∠ADC=∠DCB=120°.

(Ⅰ)求证:平面ABCD⊥平面EDCF;

(Ⅱ)求三棱锥A-BDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线为焦点,且过点

1)求双曲线与其渐近线的方程

2)若斜率为1的直线与双曲线相交于两点,且为坐标原点),求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中已知A(4,O)B(0,2)C(-1,0)D(0,-2),E在线段AB(不含端点),F在线段CD,EOF三点共线.

(1)F为线段CD的中点,证明:

(2)“F为线段CD的中点,的逆命题是否成立?说明理由;

(3),的值。

查看答案和解析>>

同步练习册答案