精英家教网 > 高中数学 > 题目详情
9.已知向量$\overrightarrow{a}$=(-3,1),$\overrightarrow{b}$=(1,-2),$\overrightarrow{m}$=$\overrightarrow{a}$+k$\overrightarrow{b}$(k∈R).
(1)若$\overrightarrow{m}$与向量2$\overrightarrow{a}$-$\overrightarrow{b}$垂直,求实数k的值;
(2)若向量$\overrightarrow{c}$=(1,-1),且$\overrightarrow{m}$与向量k$\overrightarrow{b}$+$\overrightarrow{c}$平行,求实数k的值.

分析 (1)由$\overrightarrow{m}$与向量2$\overrightarrow{a}$-$\overrightarrow{b}$垂直,可得$\overrightarrow{m}$•(2$\overrightarrow{a}$-$\overrightarrow{b}$)=0,解得k.
(2)利用向量共线定理即可得出.

解答 解:(1)$\overrightarrow{m}$=$\overrightarrow{a}$+k$\overrightarrow{b}$=(-3+k,1-2k),2$\overrightarrow{a}$-$\overrightarrow{b}$=(-7,4).
∵$\overrightarrow{m}$与向量2$\overrightarrow{a}$-$\overrightarrow{b}$垂直,∴$\overrightarrow{m}$•(2$\overrightarrow{a}$-$\overrightarrow{b}$)=-7(-3+k)+4(1-2k)=0,解得k=$\frac{5}{3}$.
(2)k$\overrightarrow{b}$+$\overrightarrow{c}$=(k+1,-2k-1),∵$\overrightarrow{m}$与向量k$\overrightarrow{b}$+$\overrightarrow{c}$平行,
∴(-2k-1)(-3+k)-(1-2k)(k+1)=0,解得k=$-\frac{1}{3}$.

点评 本题考查了向量垂直与数量积的共线、向量共线定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若直线l经过坐标原点,且定点A(1,0),B(0,1)到l的距离相等,则直线l的方程为y=±x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=ekx-1(k∈R).
(Ⅰ)当k=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)设函数F(x)=f(x)+x2-kx,证明:当x∈(0,+∞)时,F(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知全集为R,集合A={x|$\frac{x-3}{x+1}$≤0},集合B={x||2x+1|>3}.求A∩(∁RB).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.将函数y=sin(2x-$\frac{π}{3}$)的图象先向左平移$\frac{π}{3}$个单位,再将图象上各点的横坐标变为原来的$\frac{1}{2}$倍(纵坐标不变),那么所得图象的解析式为y=sin(4x+$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$),$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-m|$\overrightarrow{a}$+$\overrightarrow{b}$|+1,x∈[-$\frac{π}{3}$,$\frac{π}{4}$],m∈R.
(1)当m=0时,求f($\frac{π}{6}$)的值;
(2)若f(x)的最小值为-1,求实数m的值;
(3)是否存在实数m,使函数g(x)=f(x)+$\frac{24}{49}$m2,x∈[-$\frac{π}{3}$,$\frac{π}{4}$]有四个不同的零点?若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知一个圆锥的侧面积是50πcm2,若母线与底面所成角为60°,则此圆锥的底面半径为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知某几何体的三视图如图所示,则该几何体的表面积为(  )
A.40B.30C.36D.42

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设命题p:“?x∈R,x2+2x>m”;命题q:“?x0∈R,使${x_0}^2+2m{x_0}+2-m≤0$”.如果命题p∨q为真,命题p∧q为假,求实数m的取值范围.

查看答案和解析>>

同步练习册答案