【题目】已知椭圆E: =1(a>b>0)的离心率为 ,右焦点为F,椭圆与y轴的正半轴交于点B,且|BF|= .
(1)求椭圆E的方程;
(2)若斜率为1的直线l经过点(1,0),与椭圆E相交于不同的两点M,N,在椭圆E上是否存在点P,使得△PMN的面积为 ,请说明理由.
【答案】
(1)解:由题意, ,得c=1,∴b2=a2﹣c2=1.
则椭圆E的方程为:
(2)解:存在.
设点P(x,y),直线l的方程为y=x﹣1.
由 ,得M(0,﹣1),N( ),
则|MN|= .
则点P到直线l的距离为 .
设过点P与直线l平行的直线l1:y=x+m.
联立 ,得3x2+4mx+2m2﹣2=0.
由△=16m2﹣12(2m2﹣2)=0,解得m= .
当m= 时,l与l1之间的距离为 >1;
当m=﹣ 时,l与l1之间的距离为 <1.
则在椭圆E上存在点P,使得△PMN的面积为
【解析】(1)由题意求得a,c的值,结合隐含条件求得b,则椭圆方程可求;(2)设出P点坐标及直线l的方程,由△PMN的面积为 求得点P到直线l的距离为1,再设出过点P与直线l平行的直线l1:y=x+m.与椭圆方程联立,由判别式等于0求得m值,再结合两平行线间的距离公式求出l与l1之间的距离,与1比较得答案.
科目:高中数学 来源: 题型:
【题目】为了了解学生遵守《中华人民共和国交通安全法》的情况,调查部门在某学校进行了如下的随机调查:向被调查者提出两个问题:(1)你的学号是奇数吗?(2)在过路口的时候你是否闯过红灯?要求被调查者背对调查人抛掷一枚硬币,如果出现正面,就回答第(1)个问题;否则就回答第(2)个问题.被调查者不必告诉调查人员自己回答的是哪一个问题,只需要回答“是”或“不是”,因为只有被调查本人知道回答了哪个问题,所以都如实做了回答.如果被调查的600人(学号从1到600)中有180人回答了“是”,由此可以估计在这600人中闯过红灯的人数是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图在四面体OABC中,OA,OB,OC两两垂直,且OB=OC=3,OA=4,给出如下判断: ①存在点D(O点除外),使得四面体DABC有三个面是直角三角形;
②存在点D,使得点O在四面体DABC外接球的球面上;
③存在唯一的点D使得OD⊥平面ABC;
④存在点D,使得四面体DABC是正棱锥;
⑤存在无数个点D,使得AD与BC垂直且相等.
其中正确命题的序号是(把你认为正确命题的序号填上).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的中心在原点,焦点在x轴上,离心率为 ,短轴长为4 . (Ⅰ)求椭圆C的标准方程;
(Ⅱ)直线x=2与椭圆C交于P、Q两点,A、B是椭圆O上位于直线PQ两侧的动点,且直线AB的斜率为 .
①求四边形APBQ面积的最大值;
②设直线PA的斜率为k1 , 直线PB的斜率为k2 , 判断k1+k2的值是否为常数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影O为AC的中点,A1O=2,AB⊥BC,AB=BC= 点P在线段A1B上,且cos∠PAO= ,则直线AP与平面A1AC所成角的正弦值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 =(2cosx,sinx﹣cosx), =( sinx,sinx+cosx),记函数f(x)= . (Ⅰ)求f(x)的表达式,以及f(x)取最大值时x的取值集合;
(Ⅱ)设△ABC三内角A,B,C的对应边分别为a,b,c,若a+b=2 ,c= ,f(C)=2,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知m,n,s,t∈R+ , m+n=2, + =9,其中m,n是常数,当s+t取最小值 时,m,n对应的点(m,n)是椭圆 =1的一条弦的中点,则此弦所在的直线方程 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:k2﹣8k﹣20≤0,命题q:方程 =1表示焦点在x轴上的双曲线. (Ⅰ)命题q为真命题,求实数k的取值范围;
(Ⅱ)若命题“p∨q”为真,命题“p∧q”为假,求实数k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com