精英家教网 > 高中数学 > 题目详情
19.函数y=$\frac{sinx}{2+cosx}$是奇(填“奇”或“偶”)函数.

分析 由题意,函数的定义域为R,则f(-x)=$\frac{sin(-x)}{2+cos(-x)}$=-$\frac{sinx}{2+cosx}$=-f(x),即可得出结论.

解答 解:由题意,函数的定义域为R,则
f(-x)=$\frac{sin(-x)}{2+cos(-x)}$=-$\frac{sinx}{2+cosx}$=-f(x),
∴函数y=$\frac{sinx}{2+cosx}$是奇函数,
故答案为:奇.

点评 本题考查函数的奇偶性的判断,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.二项式(x3-$\frac{1}{{x}^{2}}$)5的展开式中的常数项为(  )
A.10B.-10C.-14D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$|且|$\overrightarrow{a}$+2$\overrightarrow{b}$|>|m$\overrightarrow{b}$|恒成立,则实数m的取值范围是(  )
A.[-2,2]B.[-$\frac{5}{2}$,$\frac{5}{2}$]C.(-2,2)D.(-$\frac{5}{2}$,$\frac{5}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在数列{an}中,对任意n∈N*,若存在常数λ1,λ2,…,λk,使得an+k1an+k-12an+k-2+…+λkan(λi≠0,i=1,2,…,k)恒成立,则称数列{an}为k阶数列.
①若an=2n,则数列{an}为1阶数列;
②若an=2n+1,则数列{an}为2阶数列;
③若an=n2,则数列{an}为3阶数列;
以上结论正确的序号是(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.当x取任意实数时,函数f(x)均取x,x2两者中较小的值,那么函数的解析式可写作f(x)=$\left\{\begin{array}{l}{x,x>1或x<0}\\{{x}^{2},0≤x≤1}\end{array}\right.$,试作出函数f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.非零向量 $\overrightarrow{a}$,$\overrightarrow{b}$夹角为120°,且|$\overrightarrow{a}$-$\overrightarrow{b}$|=2,则|$\overrightarrow{a}$+$\overrightarrow{b}$|的取值范围为(  )
A.[1,$\sqrt{3}$]B.[2,$\frac{4\sqrt{3}}{3}$]C.[$\frac{2\sqrt{3}}{3}$,4)D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.动点P到定点A(-2,0)与B(-2,4)距离相等,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.终边在折线y=$\sqrt{3}$|x|所有角的集合是{α|α=60°+k•360°或α=120°+k•360°,k∈Z},在这个集合中,介于[-360°,360°)的角的集合是{-300°,-240°60°,120°}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设Sn是等差数列{an}的前n项和,S6=21且S15=120,则$\frac{{S}_{n}+20}{{a}_{n}+1}$的最小值是$\frac{35}{6}$.

查看答案和解析>>

同步练习册答案