精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax2﹣x+2a﹣1(a>0).
(1)若f(x)在区间[1,2]为单调增函数,求a的取值范围;
(2)设函数f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式;
(3)设函数 ,若对任意x1 , x2∈[1,2],不等式f(x1)≥h(x2)恒成立,求实数a的取值范围.

【答案】
(1)解:∵函数f(x)=ax2﹣x+2a﹣1(a>0)的图象是开口朝上,且以直线x= 为对称轴的抛物线,

若f(x)在区间[1,2]为单调增函数

解得:


(2)解:①当0< <1,即a> 时,f(x)在区间[1,2]上为增函数,

此时g(a)=f(1)=3a﹣2

②当1≤ ≤2,即 时,f(x)在区间[1, ]是减函数,在区间[ ,2]上为增函数,

此时g(a)=f( )=

③当 >2,即0<a< 时,f(x)在区间[1,2]上是减函数,

此时g(a)=f(2)=6a﹣3

综上所述:


(3)解:对任意x1,x2∈[1,2],不等式f(x1)≥h(x2)恒成立,

即f(x)min≥h(x)max

由(2)知,f(x)min=g(a)

又因为函数

所以函数h(x)在[1,2]上为单调减函数,所以

①当 时,由g(a)≥h(x)max得: ,解得 ,(舍去)

②当 时,由g(a)≥h(x)max得: ,即8a2﹣2a﹣1≥0,

∴(4a+1)(2a﹣1)≥0,解得

所以

③当 时,由g(a)≥h(x)max得: ,解得

所以a

综上所述:实数a的取值范围为


【解析】(1)若f(x)在区间[1,2]为单调增函数,则根据题意a>0,只需二次函数的对称轴在区间的左侧即可,列出不等式可解得a的取值范围,(2)分类讨论给定区间与对称轴的关系,分析出各种情况下g(x)的表达式,综合讨论结果,可得答案,(3)不等式f(x1)≥h(x2)恒成立,

即f(x)min≥h(x)max,分类讨论各种情况下实数a的取值,综合讨论结果,可得答案.

【考点精析】关于本题考查的函数的最值及其几何意义和二次函数的性质,需要了解利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ ,g(x)=﹣x﹣ln(﹣x)其中a≠0,
(1)若x=1是函数f(x)的极值点,求实数a的值及g(x)的单调区间;
(2)若对任意的x1∈[1,2],x2∈[﹣3,﹣2]使得f(x1)≥g(x2)恒成立,且﹣2<a<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的部分图象如图所示,将y=f(x)的图象向右平移 个单位长度后得到函数y=g(x)的图象.
(1)求函数y=g(x)的解析式;
(2)在△ABC中,角A,B,C满足2sin2 =g(C+ )+1,且其外接圆的半径R=2,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx,g(x)=﹣x2+ax﹣2
(Ⅰ)求函数f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若函数y=f(x)与y=g(x)的图象恰有一个公共点,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4cosωxsin(ωx+ )+a(ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π.
(Ⅰ)求a和ω的值;
(Ⅱ)求函数f(x)在[0,π]上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某媒体对“男女同龄退休”这一公众关注的问题进行 了民意调査,右表是在某单位得到的数据(人数):

赞同

反对

合计

5

6

11

11

3

14

合计

16

9

25

附表:

P(K2≥K)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828


(1 )能否有90%以上的把握认为对这一问题的看法与性别有关?
【答案】解:解:K2= ≈2.932>2.706,
由此可知,有90%的把握认为对这一问题的看法与性别有关
(1)进一步调查:(ⅰ)从赞同“男女同龄退休”16人中选出3人进行陈述发言,求事件“男士和女士各至少有1人发言”的概率; (ⅱ)从反对“男女同龄退休”的9人中选出3人进行座谈,设参加调査的女士人数为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A、B、C为锐角△ABC的三个内角,M=sinA+sinB+sinC,N=cosA+2cosB,则(
A.M<N
B.M=N
C.M>N
D.M、N大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ),x∈R,(ω>0,﹣ <φ< )的部分图象如图所示.
(Ⅰ)确定A,ω,φ的值,并写出函数f(x)的解析式;
(Ⅱ)描述函数y=f(x)的图象可由函数y=sinx的图象经过怎样的变换而得到;
(Ⅲ)若f( )= <α< ),求tan2(α﹣ ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体ABCD﹣A1B1C1D1中,AA1=2AB=2BC,E,F,E1分别是棱AA1 , BB1 , A1B1的中点.
(1)求证:CE∥平面C1E1F;
(2)求证:平面C1E1F⊥平面CEF.

查看答案和解析>>

同步练习册答案