精英家教网 > 高中数学 > 题目详情

(本题满分8分)由3位男生2位女生排成一排,

  (1)所有不同排列的个数;

(2)恰有两个男生相邻的排列个数;

(3)男生不等高且从左到右的排列的顺序为由高到矮的排列的个数?

【结果全部用数字作答】

解(1)120  【2分】(2)72  【式子正确给2分满分3分】 (3)20   【同(2)】

练习册系列答案
相关习题

科目:高中数学 来源:汕头市2009-2010学年度第二学期高三级数学综合测练题(理二) 题型:解答题

(本题满分12分)2008年中国北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:

福娃名称

贝贝

晶晶

欢欢

迎迎

妮妮

数量

1

1

1

2

3

从中随机地选取5只.

(1)求选取的5只恰好组成完整“奥运吉祥物”的概率;

(2)若完整地选取奥运会吉祥物记10分,若选出的5只中仅差一种记8分,差两种记6分,以此类推. 设ξ表示所得的分数,求ξ的分布列及数学期望.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分8分)

           由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f –1(x)能确定数列{bn},bn= f –1(n),若对于任意nÎN*,都有bn=an,则称数列{bn}是数列{an}的“自反数列”.

   (1)若函数f(x)=确定数列{an}的自反数列为{bn},求an

   (2)在(1)条件下,记为正数数列{xn}的调和平均数,若dn=,Sn为数列{dn}的前n项之和,Hn为数列{Sn}的调和平均数,求;

   (3)已知正数数列{cn}的前n项之和 求Tn表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分8分)

           由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f –1(x)能确定数列{bn},bn= f –1(n),若对于任意nÎN*,都有bn=an,则称数列{bn}是数列{an}的“自反数列”.

   (1)若函数f(x)=确定数列{an}的自反数列为{bn},求an

   (2)在(1)条件下,记为正数数列{xn}的调和平均数,若dn=,Sn为数列{dn}的前n项之和,Hn为数列{Sn}的调和平均数,求;

   (3)已知正数数列{cn}的前n项之和 求Tn表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分8分)

       由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f -1(x)能确定数列{bn},bn= f –1(n),若对于任意nÎN*,都有bn=an,则称数列{bn}是数列{an}的“自反数列”.

   (1)若函数f(x)=确定数列{an}的自反数列为{bn},求an

   (2)已知正数数列{cn}的前n项之和Sn=(cn+).写出Sn表达式,并证明你的结论;

   (3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=,Dn是数列{dn}的前n项之和,且Dn>log a (1-2a)恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案