精英家教网 > 高中数学 > 题目详情

(本小题满分14分)
已知函数的单调递增区间为
(Ⅰ)求证:
(Ⅱ)当取最小值时,点是函数图象上的两点,若存在使得,求证:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数时取得极值.
(I)求的值;
(II)若对于任意的,都有成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数=.
(1)求函数在区间上的值域;
(2)是否存在实数,对任意给定的,在区间上都存在两个不同的,使得成立.若存在,求出的取值范围;若不存在,请说明理由.
(3)给出如下定义:对于函数图象上任意不同的两点,如果对于函数图象上的点(其中总能使得成立,则称函数具备性质“”,试判断函数是不是具备性质“”,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ln x-.
(1)若a>0,试判断f(x)在定义域内的单调性;
(2)若f(x)在[1,e]上的最小值为,求a的值;
(3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数 (R).
(1) 若,求函数的极值;
(2)是否存在实数使得函数在区间上有两个零点,若存在,求出的取值范围;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)抛物线经过点
其中,设函数处取到极值.
(1)用表示
(2) 比较的大小(要求按从小到大排列);
(3)若,且过原点存在两条互相垂直的直线与曲线均相切,求的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数),
(Ⅰ)若,曲线在点处的切线与轴垂直,求的值;
(Ⅱ)在(Ⅰ)的条件下,求证:
(Ⅲ)若,试探究函数的图象在其公共点处是否存在公切线,若存在,研究值的个数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的图像在处的切线方程;
(2)设实数,求函数上的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)函数在P点处的切线平行于直线,求的值。

查看答案和解析>>

同步练习册答案