精英家教网 > 高中数学 > 题目详情
8.求函数f(x)=lg(3-4sin2x)的定义域.

分析 由对数式的真数大于0,然后求解三角不等式得答案.

解答 解:由3-4sin2x>0,得$-\frac{\sqrt{3}}{2}<sinx<\frac{\sqrt{3}}{2}$,
∴$2kπ-\frac{π}{3}<x<2kπ+\frac{π}{3},k∈Z$或$2kπ+\frac{2}{3}π<x<2kπ+\frac{4}{3}π,k∈Z$,
∴函数f(x)=lg(3-4sin2x)的定义域为(2kπ-$\frac{π}{3}$,2kπ+$\frac{π}{3}$)∪(2kπ+$\frac{2π}{3}$,2kπ+$\frac{4π}{3}$).

点评 本题考查函数的定义域及其求法,考查了三角不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知集合A={(x,y)|y=2x,x∈R},B={(x,y)|y=x2,x∈(0,+∞)},则A∩B={(2,4),(4,16)}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.化简$\frac{{\sqrt{1-{{sin}^2}α}}}{cosα}+\frac{sinα}{{\sqrt{1-{{cos}^2}α}}}$=(α为第二象限的角)(  )
A.2B.0C.-2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{AC}$=(-1,2),$\overrightarrow{BD}$=(3,0),以AC、BD为对角线的平行四边形ABCD,求平行四边形ABCD的相邻两边的边长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,$\overrightarrow{a}$=(2,1),$\overrightarrow{a}$+2$\overrightarrow{b}$=(4,5),则sinθ=$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.解不等式$\frac{{x}^{2}-x-5}{{x}^{2}+5x+6}$≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.记${(2x+\frac{1}{x})^n}$的展开式中第m项的系数为bm,若b3=2b4,则n=(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数y=f(x)是函数y=ax(a>0,且a≠1)的反函数,其图象经过点(2,-1),则f(x)=(  )
A.y=log2xB.$\frac{1}{2^x}$C.2xD.$y={log_{\frac{1}{2}}}x$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$α∈(\frac{π}{2},π)$,sin$α=\frac{2\sqrt{5}}{5}$,则tan($α-\frac{π}{4}$)3.

查看答案和解析>>

同步练习册答案