精英家教网 > 高中数学 > 题目详情
已知下列命题:
(1)θ是第二象限角;
(2)sin
θ
2
+cos
θ
2
=-
7
5

(3)tan
θ
2
=
4
3

(4)tan
θ
2
=
3
4

(5)sin
θ
2
-cos
θ
2
=-
1
5

试以其中若干(一个或多个)命题为条件,然后以剩余命题中的若干命题为结论,组成新命题,并证明之.
分析:此题可先假设(1)θ是第二象限角;(2)sin
θ
2
+cos
θ
2
=-
7
5
正确,证明(3)tan
θ
2
=
4
3
结论正确,我们可以利用同角公式求解,然后即可证明之.
解答:解:以(1)(2)为条件,以(3)为结论.
证明:因为θ是第二象限角,
所以kπ+
π
4
θ
2
<kπ+
π
2
,k∈Z.①
又sin
θ
2
+cos
θ
2
=-
7
5

所以2kπ+π<
θ
2
<2kπ+
3
2
π,k∈Z.②
由①②可知2kπ+
5
4
π<
θ
2
<2kπ+
3
2
π.
又由sin
θ
2
+cos
θ
2
=-
7
5
,得sin
θ
2
•cos
θ
2
=
12
25

所以
sin
θ
2
•cos
θ
2
sin2
θ
2
+cos2
θ
2
=
12
25
.分子分母同除以sin
θ
2
•cos
θ
2
可化得,
所以12tan2
θ
2
-25tan
θ
2
+12=0.
解得tan
θ
2
=
3
4
(舍),或tan
θ
2
=
4
3

∴tan
θ
2
=
4
3
点评:此题主要考查命题的真假判断与应用及三角函数中同角关系这一知识点,此题的关键是明确题设和结论的含义,然后问题可解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知下列命题:
(1)|
a
|2=
a
2

(2)
a
b
a
2
=
b
a

(3)(
a
b
)2=
a
2
b
2

(4)(
a
-
b
)2=
a
2
-2
a
b
+
b
2

(5)
a
b
?存在唯一的实数λ∈R,使得
b
a

(6)
e
为单位向量,且
a
e
,则
a
=±|
a
|•
e

(7)|
a
a
a
|=|
a
|3

(8)
a
b
共线,
b
c
共线,则
a
c
共线;
(9)若
a
b
=
b
c
b
0
,则
a
=
c

(10)若
OA
=
a
OB
=
b
a
b
不共线,则∠AOB平分线上的向量
OM
λ(
a
|
a
|
+
b
|
b
|
)
,λ由
OM
确定./
其中正确命题的序号
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列命题:
(1)一条直线和另一条直线平行,那么它就和经过另一条直线的任何平面平行;
(2)一条直线平行于一个平面,则这条直线与这个平面内所有直线都没有公共点,因此这条直线与这个平面内的所有直线都平行;
(3)若直线l与平面α不平行,则l与α内任一直线都不平行;
(4)与一平面内无数条直线都平行的直线必与此平面平行.
其中正确命题的个数是
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列命题:
(1)若α∥β,a⊥α,则a⊥β;
(2)若a⊥b,a⊥α,则b∥α;
(3)若a⊥α,a⊥β,则α∥β;
(4)若a∥α,a⊥b,则b⊥α,
其中正确的命题的序号是
(1)(3)
(1)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列命题:
(1)若k∈R,且k
b
=
0
,则k=0或
b
=
0

(2)若
a
b
=0,则
a
=
0
b
=
0

(3)若不平行的两个非零向量
a
b
满足|
a
|=|
b
|,则(
a
+
b
)•(
a
-
b
)=0
(4)若
a
b
平行,则
a
b
=|
a
|•|
b
|
(5)(
a
b
)•
c
=
a
•(
b
c
)=
a
b
c

(6)若
a
≠0,则对任一非零向量
b
,有
a
b
≠0.
其中真命题的个数是(  )

查看答案和解析>>

同步练习册答案