分析 利用二阶矩阵乘法法则进行求解.
解答 解:$(\begin{array}{l}{1}&{1}\\{0}&{1}\end{array})$10=$(\begin{array}{l}{1}&{2}\\{0}&{1}\end{array})$$(\begin{array}{l}{1}&{1}\\{0}&{1}\end{array})$8=$(\begin{array}{l}{1}&{3}\\{0}&{1}\end{array})$$(\begin{array}{l}{1}&{1}\\{0}&{1}\end{array})$7=$(\begin{array}{l}{1}&{4}\\{0}&{1}\end{array})$$(\begin{array}{l}{1}&{1}\\{0}&{1}\end{array})$6
=$(\begin{array}{l}{1}&{5}\\{0}&{1}\end{array})$$(\begin{array}{l}{1}&{1}\\{0}&{1}\end{array})$5=$(\begin{array}{l}{1}&{6}\\{0}&{1}\end{array})$$(\begin{array}{l}{1}&{1}\\{0}&{1}\end{array})$4=$(\begin{array}{l}{1}&{7}\\{0}&{1}\end{array})$$(\begin{array}{l}{1}&{1}\\{0}&{1}\end{array})$3
=$(\begin{array}{l}{1}&{8}\\{0}&{1}\end{array})$$(\begin{array}{l}{1}&{1}\\{0}&{1}\end{array})$2=$(\begin{array}{l}{1}&{9}\\{0}&{1}\end{array})$$(\begin{array}{l}{1}&{1}\\{0}&{1}\end{array})$=$(\begin{array}{l}{1}&{10}\\{0}&{1}\end{array})$.
∴$(\begin{array}{l}{1}&{1}\\{0}&{1}\end{array})$10=$(\begin{array}{l}{1}&{10}\\{0}&{1}\end{array})$.
点评 本题考查二阶矩阵的乘法运算,是基础题,解题时要注意二阶矩阵乘法法则的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | m+n | B. | -(m+n) | C. | n-m | D. | m-n |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com