【题目】已知椭圆的右顶点为,左焦点为,离心率,过点的直线与椭圆交于另一个点,且点在轴上的射影恰好为点,若.
(1)求椭圆的标准方程;
(2)过圆上任意一点作圆的切线与椭圆交于,两点,以为直径的圆是否过定点,如过定点,求出该定点;若不过定点,请说明理由.
【答案】(1);(2)以为直径的圆恒过坐标原点.
【解析】
(1)先根据离心率得,,再根据点B在椭圆上得B点纵坐标,最后根据三角形面积公式解得,即得,(2)先考虑直线的斜率不存在情况,确定定点,再利用韦达定理以及向量数量积论证圆过坐标原点.
(1)∵,∴,,
设,代人椭圆方程得: ,
∴ ,
∴,
∴,
∴,
∴椭圆的标准方程为.
(2)当直线的斜率不存在时,以为直径的圆的圆心为或,半径为2,
以为直径的圆的标准方程为: 或,
因为两圆都过坐标原点,∴以为直径的圆过坐标原点,
当直线的斜率存在时,设其方程为,,,
因为直线与圆相切,所以圆心到直线的距离,
,
所以,
由,
化简得:,
∴,,
∴
,
∴以为直径的圆过坐标原点,
综上,以为直径的圆恒过坐标原点.
科目:高中数学 来源: 题型:
【题目】“爱国,是人世间最深层、最持久的情感,是一个人立德之源、立功之本。”在中华民族几千年绵延发展的历史长河中,爱国主义始终是激昂的主旋律。爱国汽车公司拟对“东方红”款高端汽车发动机进行科技改造,根据市场调研与模拟,得到科技改造投入(亿元)与科技改造直接收益(亿元)的数据统计如下:
2 | 3 | 4 | 6 | 8 | 10 | 13 | 21 | 22 | 23 | 24 | 25 | |
13 | 22 | 31 | 42 | 50 | 56 | 58 | 68.5 | 68 | 67.5 | 66 | 66 |
当时,建立了与的两个回归模型:模型①:;模型②:;当时,确定与满足的线性回归方程为:.
(1)根据下列表格中的数据,比较当时模型①、②的相关指数,并选择拟合精度更高、更可靠的模型,预测对“东方红”款汽车发动机科技改造的投入为17亿元时的直接收益.
回归模型 | 模型① | 模型② |
回归方程 | ||
182.4 | 79.2 |
(附:刻画回归效果的相关指数,.)
(2)为鼓励科技创新,当科技改造的投入不少于20亿元时,国家给予公司补贴收益10亿元,以回归方程为预测依据,比较科技改造投入17亿元与20亿元时公司实际收益的大小;
(附:用最小二乘法求线性回归方程的系数公式 ;)
(3)科技改造后,“东方红”款汽车发动机的热效大幅提高,服从正态分布,公司对科技改造团队的奖励方案如下:若发动机的热效率不超过,不予奖励;若发动机的热效率超过但不超过,每台发动机奖励2万元;若发动机的热效率超过,每台发动机奖励5万元.求每台发动机获得奖励的数学期望.
(附:随机变量服从正态分布,则,.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥的底面是菱形,,底面,是上的任意一点.
(1)求证:平面平面;
(2)设,是否存在点使平面与平面所成的锐二面角的大小为?如果存在,求出点的位置,如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数).以原点为极点,以轴为非负半轴为极轴建立极坐标系,两坐标系相同的长度单位.圆的方程为被圆截得的弦长为.
(Ⅰ)求实数的值;
(Ⅱ)设圆与直线交于点,若点的坐标为,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的离心率为,圆与轴正半轴交于点, 圆在点处的切线被椭圆截得的弦长为.
(1)求椭圆的方程;
(2)设圆上任意一点处的切线交椭圆于点、,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体ABCD﹣A1B1C1D1中,O为线段AC的中点,点E在线段A1C1上,则直线OE与平面A1BC1所成角的正弦值的取值范围是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着科技的发展,近年看电子书的国人越来越多;所以近期有许多人呼呼“回归纸质书”,目前出版物阅读中纸质书占比出现上升现随机选出200人进行采访,经统计这200人中看纸质书的人数占总人数.将这200人按年龄分成五组:第l组,第2组,第3组,第4组,第5组,其中统计看纸质书的人得到的频率分布直方图如图所示.
(1)求的值及看纸质书的人的平均年龄;
(2)按年龄划分,把年龄在的称青壮年组,年龄在的称为中老年组,若选出的200人中看电子书的中老年人有10人,请完成下面列联表,并判断能否在犯错误的概率不超过0.1的前提下认为看书方式与年龄层有关?
看电子书 | 看纸质书 | 合计 | |
青壮年 | |||
中老年 | |||
合计 |
附:(其中).
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com