精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的右顶点为,左焦点为,离心率,过点的直线与椭圆交于另一个点,且点轴上的射影恰好为点,若

(1)求椭圆的标准方程;

(2)过圆上任意一点作圆的切线与椭圆交于两点,以为直径的圆是否过定点,如过定点,求出该定点;若不过定点,请说明理由.

【答案】(1);(2)以为直径的圆恒过坐标原点.

【解析】

1)先根据离心率得,再根据点B在椭圆上得B点纵坐标,最后根据三角形面积公式解得,即得,(2)先考虑直线的斜率不存在情况,确定定点,再利用韦达定理以及向量数量积论证圆过坐标原点.

(1)∵

,代人椭圆方程得:

∴椭圆的标准方程为.

(2)当直线的斜率不存在时,以为直径的圆的圆心为,半径为2,

为直径的圆的标准方程为:

因为两圆都过坐标原点,∴以为直径的圆过坐标原点,

当直线的斜率存在时,设其方程为

因为直线与圆相切,所以圆心到直线的距离,

所以

化简得:

∴以为直径的圆过坐标原点,

综上,以为直径的圆恒过坐标原点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“爱国,是人世间最深层、最持久的情感,是一个人立德之源、立功之本。”在中华民族几千年绵延发展的历史长河中,爱国主义始终是激昂的主旋律。爱国汽车公司拟对“东方红”款高端汽车发动机进行科技改造,根据市场调研与模拟,得到科技改造投入(亿元)与科技改造直接收益(亿元)的数据统计如下:

2

3

4

6

8

10

13

21

22

23

24

25

13

22

31

42

50

56

58

68.5

68

67.5

66

66

时,建立了的两个回归模型:模型①:;模型②:;当时,确定满足的线性回归方程为:.

(1)根据下列表格中的数据,比较当时模型①、②的相关指数,并选择拟合精度更高、更可靠的模型,预测对“东方红”款汽车发动机科技改造的投入为17亿元时的直接收益.

回归模型

模型①

模型②

回归方程

182.4

79.2

(附:刻画回归效果的相关指数.)

(2)为鼓励科技创新,当科技改造的投入不少于20亿元时,国家给予公司补贴收益10亿元,以回归方程为预测依据,比较科技改造投入17亿元与20亿元时公司实际收益的大小;

(附:用最小二乘法求线性回归方程的系数公式

(3)科技改造后,“东方红”款汽车发动机的热效大幅提高,服从正态分布,公司对科技改造团队的奖励方案如下:若发动机的热效率不超过,不予奖励;若发动机的热效率超过但不超过,每台发动机奖励2万元;若发动机的热效率超过,每台发动机奖励5万元.求每台发动机获得奖励的数学期望.

(附:随机变量服从正态分布,则.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数上单调递增,求实数的取值范围;

(Ⅱ)若函数的图象与直线交于两点,线段中点的横坐标为,证明:为函数的导函数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥的底面是菱形,底面上的任意一点.

(1)求证:平面平面

(2)设,是否存在点使平面与平面所成的锐二面角的大小为?如果存在,求出点的位置,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).以原点为极点,以轴为非负半轴为极轴建立极坐标系,两坐标系相同的长度单位.圆的方程为被圆截得的弦长为.

(Ⅰ)求实数的值;

(Ⅱ)设圆与直线交于点,若点的坐标为,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率为,圆轴正半轴交于点, 圆在点处的切线被椭圆截得的弦长为.

(1)求椭圆的方程;

(2)设圆上任意一点处的切线交椭圆于点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCDA1B1C1D1中,O为线段AC的中点,点E在线段A1C1上,则直线OE与平面A1BC1所成角的正弦值的取值范围是(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着科技的发展,近年看电子书的国人越来越多;所以近期有许多人呼呼“回归纸质书”,目前出版物阅读中纸质书占比出现上升现随机选出200人进行采访,经统计这200人中看纸质书的人数占总人数.将这200人按年龄分成五组:第l组,第2组,第3组,第4组,第5组,其中统计看纸质书的人得到的频率分布直方图如图所示.

(1)求的值及看纸质书的人的平均年龄;

(2)按年龄划分,把年龄在的称青壮年组,年龄在的称为中老年组,若选出的200人中看电子书的中老年人有10人,请完成下面列联表,并判断能否在犯错误的概率不超过0.1的前提下认为看书方式与年龄层有关?

看电子书

看纸质书

合计

青壮年

中老年

合计

附:(其中).

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,梯形所在的平面与等腰梯形所在的平面互相垂直,的中点..

1)求证:平面

2)求证:平面平面

3)求多面体的体积.

查看答案和解析>>

同步练习册答案