【题目】据《中国新闻网》10月21日报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查,就是否“取消英语听力”的问题,调查统计的结果如下表:
态度 | 应该取消 | 应该保留 | 无所谓 |
在校学生 | 2100人 | 120人 | y人 |
社会人士 | 600人 | x人 | z人 |
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05.
(Ⅰ)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(Ⅱ)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望.
【答案】解:(I)∵抽到持“应该保留”态度的人的概率为0.05, ∴ =0.05,解得x=60.
∴持“无所谓”态度的人数共有3600﹣2100﹣120﹣600﹣60=720.
∴应在“无所谓”态度抽取720× =72人.
(Ⅱ)由(I)知持“应该保留”态度的一共有180人,
∴在所抽取的6人中,在校学生为 =4人,社会人士为 =2人,
于是第一组在校学生人数ξ=1,2,3,
P(ξ=1)= ,P(ξ=2)= ,P(ξ=3)= ,
即ξ的分布列为:
ξ | 1 | 2 | 3 |
P |
∴Eξ=1× +2× +3× =2
【解析】(Ⅰ)先由抽到持“应该保留”态度的人的概率为0.05,由已知条件求出x,再求出持“无所谓”态度的人数,由此利用抽样比能求出应在“无所谓”态度抽取的人数.(Ⅱ)由题设知第一组在校学生人数ξ=1,2,3,分别求出P(ξ=1),P(ξ=2),P(ξ=3),由此能求出ξ的分布列和数学期望.
【考点精析】认真审题,首先需要了解分层抽样(先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本).
科目:高中数学 来源: 题型:
【题目】将圆的六个等分点分成相同的两组,它们每组三个点构成的两个正三角形除去内部的六条线段后可以形成一个正六角星.如图所示的正六角星的中心为点O,其中x,y分别为点O到两个顶点的向量.若将点O到正六角星12个顶点的向量都写成ax+by的形式,则a+b的最大值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若直角坐标平面内的两点P,Q满足条件:①P,Q都在函数y=f(x)的图象上;②P,Q关于原点对称,则称点对(P,Q)是函数y=f(x)的一对“友好点对”(点对(P,Q)与(Q,P)看作同一对“友好点对”).已知函数f(x)= ,则此函数的“友好点对”有( )
A.3对
B.2对
C.1对
D.0对
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在区间D上的函数f(x)和g(x),如果对任意x∈D,都有|f(x)﹣g(x)|≤1成立,则称f(x)在区间D上可被g(x)替代,D称为“替代区间”.给出以下问题:
①f(x)=x2+1在区间(﹣∞,+∞)上可被g(x)=x2+ 替代;
②如果f(x)=lnx在区间[1,e]可被g(x)=x﹣b替代,则﹣2≤b≤2;
③设f(x)=lg(ax2+x)(x∈D1),g(x)=sinx(x∈D1),则存在实数a(a≠0)及区间D1 , D2 , 使得f(x)在区间D1∩D2上被g(x)替代.
其中真命题是( )
A.①②③
B.②③
C.①
D.①②
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD是正方形.点E是棱PC的中点,平面ABE与棱PD交于点F.
(1)求证:AB∥EF;
(2)若PA=AD,且平面PAD⊥平面ABCD,求证:AF⊥平面PCD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
(1)若曲线C1是一个圆,且点P(1,1)在圆C1外,求实数m的取值范围;
(2)当m=2时,曲线关于直线x+1=0对称的曲线为,设P为平面上的点,满足:存在过P点的无穷多对互相垂直的直线,它们分别与曲线C1和曲线相交,且直线被曲线C1截得的弦长与直线l2被曲线C2截得的弦长总相等.求所有满足条件的点P的坐标;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是圆:上任意一点,点与点关于原点对称,线段的垂直平分线与交于点.
(1)求点的轨迹的方程;
(2)过点的动直线与点的轨迹交于两点,在轴上是否存在定点使以为直径的圆恒过这个点?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市准备引进优秀企业进行城市建设. 城市的甲地、乙地分别对5个企业(共10个企业)进行综合评估,得分情况如茎叶图所示.
(Ⅰ)根据茎叶图,求乙地对企业评估得分的平均值和方差;
(Ⅱ)规定得分在85分以上为优秀企业. 若从甲、乙两地准备引进的优秀企业中各随机选取1个,求这两个企业得分的差的绝对值不超过5分的概率.
注:方差
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com