精英家教网 > 高中数学 > 题目详情

如图,在四棱锥E﹣ABCD中,矩形ABCD所在的平面与平面AEB垂直,且∠BAE=120°,AE=AB=4,AD=2,F,G,H分别为BE,AE,BC的中点
(1)求证:DE∥平面FGH;
(2)若点P在直线GF上,,且二面角D﹣BP﹣A的大小为,求λ的值.

(1)证明见解析;(2)λ的值等于1或4.

解析试题分析:(1)取AD的中点M,连接MH,MG,由G、H、F分别是AE、BC、BE的中点,得MH∥GF,G、F、H、M四点共面,又MG∥DE,所以DE∥平面MGFH;(2)在平面ABE内过A作AB的垂线,记为AP,则AP⊥平面ABCD.以A为原点,AP、AB、AD所在的直线分别为x轴,y轴,z轴,建立建立空间直角坐标系A﹣xyz,如图所示.可得坐标,利用空间向量的坐标运算求出平面PBD的一个法向量=(5﹣2λ,,2,再由图可知平面ABP的一个法向量为,由cos<>==得λ=1或4.
解:(1)证明:取AD的中点M,连接MH,MG.
∵G、H、F分别是AE、BC、BE的中点,
∴MH∥AB,GF∥AB,
∴MH∥GF,即G、F、H、M四点共面,平面FGH即平面MGFH,
又∵△ADE中,MG是中位线,∴MG∥DE
∵DE?平面MGFH,MG?平面MGFH,
∴DE∥平面MGFH,即直线DE与平面FGH平行.
(2)在平面ABE内,过A作AB的垂线,记为AP,则AP⊥平面ABCD.
以A为原点,AP、AB、AD所在的直线分别为x轴,y轴,z轴,
建立建立空间直角坐标系A﹣xyz,如图所示.
可得A(0,0,0),B(0,4,0),D(0,0,2),E(2,﹣2,0),G(,﹣1,0),F(,1,0)
=(0,2,0),=(0,﹣4,2),=(,﹣5,0).
=(0,2λ,0),可得=+=(,2λ﹣5,0).
设平面PBD的法向量为=(x,y,z),
,取y=,得z=2,x=5﹣2λ,
=(5﹣2λ,,2),
又∵平面ABP的一个法向量为=(0,0,1),
∴cos<>===cos=,解之得λ=1或4
即λ的值等于1或4.

考点:1.线面平行的性质与判定;2.二面角;3.空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

已知直线a、b是异面直线,且a⊥b,为分别取自直线a、b上的单位向量,且 , ,则k=

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知三棱柱的侧棱与底面垂直,且,,点分别为的中点.
(1)求证:平面
(2)求证:
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱中,点在平面ABC内的射影D在AC上,.
(1)证明:
(2)设直线与平面的距离为,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面是以为中心的菱形,底面上一点,且.
(1)求的长;
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在斜三棱柱ABC-A1B1C1中,侧面ACC1A1⊥面ABC,AA1=a,A1C=CA=AB=a,AB⊥AC,D为AA1中点.
(1)求证:CD⊥面ABB1A1
(2)在侧棱BB1上确定一点E,使得二面角E-A1C1-A的大小为.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直四棱柱底面直角梯形,是棱上一点,.

(1)求异面直线所成的角;
(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示的几何体中,面为正方形,面为等腰梯形,,且平面平面
(1)求与平面所成角的正弦值;
(2)线段上是否存在点,使平面平面
证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥,底面是等腰梯形,
中点,平面
中点.

(1)证明:平面平面
(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案